Brandon Garza
Dr. Laura Johnson GEOG 300 12.17.2019 Amazon Prime and the Impact of Two-Day Shipping Introduction: It’s that time of the year again. It’s the holidays where we plan to sit down with family, eat a filling dinner, and exchange a bunch of gifts. However, you just realized that you forgot to order that toy online for your little cousin Timmy and Christmas is only a few days away. Don’t worry though you’re in luck because you only need two days. So, you log onto some site like Amazon, you put the item in your cart and place the order. Your job is done and all you must do is wrap it when it gets to your home. We’re a creature that likes immediate gratification, such as when you push the crosswalk button and hope that it will change the light immediately. The same thing applies to clicking the order button. We don’t want to have to wait that whole week, we want that four-day delivery, but why stop there why not two- or one-day delivery. With a service such as Amazon prime it makes all your shopping and shipping problems things of the past. I believe there is nothing wrong with wanting to be able to get your packages in two days, because in all honesty it is a nice luxury to have. The only issue that I find is what happens in the process for your package to get to you. The process of two-day shipping has a toll on the environment because of all the driving and flying and other tools it takes to get to you. It also causes a toll on the people that are required to get your package to you, especially during this season of high demand. History: It wasn’t so long ago when I remember quite a lot of shopping was done in stores. It wasn’t until 2005 that Amazon released their “Amazon Prime”. Before it has provided everything that it does now such as video streaming, music, books, etcetera, it provided free two-day shipping. This two-day shipping started out in the US at first and in 2007 is when they made the jump to the United Kingdom, Germany, and Japan. Since then Amazon has spread its horizons expanding to a total of 17 countries in North America, Europe, and Asia as of 2019. Before 2019 Amazon started having more bonuses for Amazon prime members. If the wait of two-day shipping has become too much to bear it was in 2015 where for certain metropolitan areas Amazon started to offer one day delivery. In 2016 they continued to expand the horizon of one day delivery offering it in a total of 27 metropolitan areas. In 2019 one-day shipping is providing all it can with one-day shipping on being available on over 10 million items. As well in Amazon reports of 2016 it says that nearly half of all U.S. households have a membership of Amazon prime. I believe that now it has probably grown and half if not more U.S. households have Amazon prime. Amazon prime is now much more than just a luxury but a standard commodity for most households. Lens / Framework 1: When we’re looking at the environmental impact that quick shipping causes it adds lots of CO2 emissions to our atmosphere. We can see from graphs that with the rise of CO2 within our atmosphere we also see a trend of increased global average temp as well as sea level rise. In the article, The Role of International Policy in Mitigating Global Shipping Emissions, authors James Corbett, and James Winebrake state, “Each freight mode carries the cargo for part of the distance; for most international trade, no single mode can successfully deliver door-to-door” (Corbett & Winebrake, 144). To receive any item, it takes a lot of modes of transportation to get from the factory to your home. There are statistics that have shown that when someone delivers your package it can be a bit less environmentally damaging in terms of emissions when compared to you driving to the store. We usually will see this in the best-case scenarios though with optimized routes, and when you have all the packages in an area ready. When it’s not optimized it can emit more fuels, and it is not optimized with prime only quickened. For example in the news article The Hidden Environmental Cost of Amazon Prime’s Free, Fast Shipping, by Nicole Nguyen she explains that with two-day, one-day, and even two hour shipping “[Amazon] increasingly relies on hundreds of thousands of independent contractors with passenger cars to make those deliveries” (Nguyen). When left to independent contractors it mostly goes through regular people in standard passenger cars who are making these deliveries. A standard car of course has standard emissions, but often these cars aren’t filled with packages like other delivery companies. As well we see that these independent cars must return to the main hub to get more packages once they deliver the first ones, causing them to go back and forth often. Another issue that we see is that with things needing to be delivered within two days is that it requires a lot of modes of transports including planes if need be. In the article Trade Costs, CO2, and the Environment author Joseph S. Shapiro states, “Airplanes emit nearly 100 times as much CO2 as ships do to move one ton-km” (Shapiro, 234). When consumers are selecting their two day shipping Amazon has a guarantee to get it there in two days, preferably they’d like to use ground shipping because of its cheaper cost, but planes have to be used when getting shipment from far distances in the U.S or even from other countries. Lens / Framework 2: All these things point towards a viewing Amazon in a political economy perspective. The textbook Environment and Society: A Critical Introduction explains this, “In a modern economy very few people own their own business and equipment, and very few have access to raw materials like oil or iron” (Robbins, 101). Many people in this world don’t have the means of production so one of the only things that people can do is provide their labor. Even though there is a lot of automation at the Amazon warehouses it does come down to the people to be able to get you your package. Without providing the workers better wages or better working conditions I do believe that a strike of sorts would be possible from the Amazon workers. When it comes to getting your package, it must pass through the hands of workers of the company and many other delivery services most of the time. It’s often that the people who handle your package are working with long hours and poor conditions that almost seem like a dystopian world. One example of the dehumanizing conditions comes from the article Surviving the Amazon, by Nichole Gracely. She says, “Everything had a barcode – even me”. (81) This is just the start of the conditions in Amazon, it really dehumanizes a worker when they are labeled by a barcode necklace which is how they keep track of you, and your work progress. Along with the barcode it’s printed on a white ID badge, the white signifies you’re a temp worker and one thing they tempt you with to work harder is a blue ID badge showing permanent worker status. It’s a terrible stunt to get the workers of Amazon to almost be competing against one another to be able to get this job. To add on to the idea of the badge our other examples comes from the article, Stop Treating Us Like Dogs! Workers Organizing Resistance at Amazon in Poland, by Jake Immanuel Ness, talking about the Amazon warehouse conditions in Poland. Ness says, “workers log into a system that monitors each workers performance, and the data is used to set their obligatory work rates, such as the demand of the number of products scanned per hour”.( Ness, 98) This is unfair because unfortunately the demand of packages scanned doesn’t compare to the actual workload since scanning packages is only one part of the process that actually gets logged. When they aren’t scanning the system logs it in as “time off task,” and when they accumulate enough time off task it logs in as taking an extra break. Enough of these extra breaks and it’s possible for a worker to be fired, simply because they were too slow to keep up with Amazon’s requirements. If one is able to keep up with the high demand that it takes to work at Amazon with the long and constant hours on you might end up getting sick or getting some other workplace injury and you’ll need some time off. That all sounds fine, but not when you hear what happens when you get sick leave such as, “To bring down the sickness rate, Amazon Poland hired a company in Spring 2017 which checks whether workers are at home during sick leave” (Ness, 99). This right here is without a doubt invasion of privacy. To call in sick and to have to have someone check that you’re home almost makes it feel that they don’t believe you’re responsible enough. It’s like when you were in elementary school and the school had to get a note or call from your parents if you were sick. It’s especially terrible that it’s possible to lose your job for not being home too, like if you had to call in sick to get important things besides work done for that day. Another complaint is the lack of openness in the schedule when the holidays come around. One ex worker says, “Peak season officially started in November and, during this ‘blackout’ period any absence was inexcusable. Doctor’s notes were not accepted” (Gracely, 81). “Blackout” periods are something that occurs in all of retail, where you can’t ask for days off since more workers are needed for the holidays. However, to not be allowed sick days and get your schedule changed around to meet Amazon’s needs is completely unjust to workers. It shows that Amazon values the businesses among all else and that workers are replaceable. Conclusion: Living in a country that we are in it’s easy to get lost in all the luxuries that we are accustomed to. Having easy access to get something that you want delivered to your house with just the click of a button or even by using your voice now is so convenient why would you not do it? I hope that I have clearly provided some reasons to think twice when you put in your online orders through Amazon. There are many other websites where you can buy what you want and maybe you’ll have to wait a little longer to get your package, but how much of a rush is it to get your package in all honesty? Until Amazon I feel starts to provide a better work environment for all of its employees and they move to greener options for their shipping, I suggest that you try and find other companies that have standard shipping or take the bus to the mall to get your Christmas gifts. Works Cited:
0 Comments
![]() By: Olivia Dorenkamp Introduction: We see chopsticks being used all over the world in millions of restaurants mostly Asian cuisines that use wooden disposable chopsticks. Those chopsticks that are thrown away cause a huge threat to our environment. Not all disposable chopsticks present a hazard but most do. Many different types of chopsticks are made from wood, plastics, even bamboo that when thrown away is considered unsustainable. Millions of mature trees are cut just to have those single-use chopsticks that end up in the trash. ”According to a 2008 United Nations report, 10,800 square miles of Asian forest are disappearing each year, a trend that must be arrested to fight climate change, given the vital role trees play in absorbing carbon dioxide” (Nuwer). Disposable Wooden Chopsticks are not only made of wood but some contain industrial chemicals that get into our bodies and when thrown away it creates chemical runoff that leads back into our bodies. Wooden chopsticks require a whitening process where they are dipped in sulfur, leading to the sulfur getting into the pores of the wood. When the chopsticks are heated the sulfur chemicals get released with heat ending up in places we don’t want them. With the health risks and manufacturing of these disposable chopsticks it posies a terrible threat to our environment and future generations. Brief History: Chopsticks are considered to be pretty ancient they have been around since 1200 B.C in Asian continents(Butler). In the beginning, Japanese chopsticks were viewed as precious and only used for religious practices. In China, it is said that confusion played a huge role in the rise of chopsticks. The Chinese philosopher mentioned that anything sharp on the table while eating will remind people of slaughterhouse violence. Chopsticks were first used to cook and then eventually turned into an eating utensil. Having ivory, jade, coral brass or agate versions of chopsticks you were considered privileged. This was because wealthier people were able to afford those expensive materials. There are many different chopstick styles used for a specific purpose when eating sweets, meals, cooking, and even funerals. In 1878 in Japan is when and where the first disposable chopsticks were made. (Butler) To this day we are seeing disposable chopsticks across the globe that have a life cycle of baggage deteriorating ourselves and our home. Once we break the two wooden pieces we are committed and are apart of the disposable chopstick’s life cycle. These chopsticks already take a lot to be made by taking land for manufacturing and also making. The beginning of the life cycle starts within a single mature tree that gets taken of its life for the benefit of one meal. Then these toxic chemical chopsticks are being used by consumers of some restaurants who offer them. After the use, they are thrown away and their chemicals end up in our bodies and in our soil. This does not have to be the case if we use reusable chopsticks. Lens framework 1: Social Construction of Nature In the text-book ‘Environment and Society’ we have learned that deforestation is an abrupt action caused by corporations who are carefree about sustainability. Trees are what give us oxygen, clean our soils, produce shelter so how could we not care for them? The main environmental cause of disposable chopsticks is deforestation. We are seeing deforestation happening all over the world for a long term sacrifice for a short term gain. “At 4,000 chopsticks per tree, that's roughly 80 billion chopsticks per year -- far more than the 57 billion estimated by the country's national forest bureau’ (Dewey). China is where most of the manufacturing is occurring with wood products. ‘China and Japan are the world’s biggest producers and consumers of disposable chopsticks, with an annual rate of 80 billion for China alone. This requires 200 million trees a year” (Song). This leads to other problems, deforestation not only harms mature trees but it also affects and destroys ecosystems, killing most of the biodiversity in that area. During the time disposable chopsticks started manufacturing is when major deforestation started happening all over Asia. Wooden or bamboo chopsticks are more accessible and inexpensive so they get used more. This caught the government's attention that this is unsustainable with the amount of deforestation required.” In 2007, China imposed a tax on wooden chopsticks with the goal of helping the environment” (Nuwer). However, the increase of disposable chopsticks could have gone up in recent years. Deforestation affects climate change on a large scale, trees are our insurance (Bennett). Lens framework 2: Risks and Hazards Usually, when getting take out at Asian restaurants we pick up disposable chopsticks to eat at home and then throw them away after eating. However, when sitting down at an Asian restaurant they usually have plastic reusable chopsticks for you. Why is this? Well, disposable chopsticks are considered to be easier as they are known as single-use chopsticks. What are the risks of using disposable chopsticks? Wooden chopsticks cannot be washed and reused due to the chemical called sulfur dioxide that is released when they get hot for example when being used to cook, eat hot foods, or like being washed. Most chopsticks are used when eating a hot bowl of pho when the sulfur is transparent so consumers are unaware. Sulfur dioxide is a toxic gas that forms when sulfur is burned in the air. In addition to that, when consumed it can cause a lot of health risks. “In 2005, a Chinese consumer council warned that sulfur dioxide from throwaway chopsticks was connected with an increase in asthma and respiratory problems” ( Rodgers ). If the sulfur is released and consumed it can cause major health problems for an individual that leads to trouble breathing. When these easily thrown away disposable chopsticks end up in the trash and the streets of our neighborhoods they create a chemical runoff. This runoff affects our whole environment due to the single use of disposable chopsticks. The toxic chemicals get into our streets by naturally occurring processes. With these naturally occurring processes, it can affect our soil where we get most of our food and destroy drinking water. So it is understandable and easy to simply just throw them away without knowing how much impact they have on the environment not to mention all the trees being used. Conclusion: Looking at the overall manufacturing and disposing of the product, there can be multiple effects on the environment. Chopsticks are not only utensils they hold a lot of baggage, baggage that fills the world with health risks and environmental problems. We are seeing deforestation happening leading to wildlife and global warming, chemicals leading in our bodies and streets, for the cost of one meal. It’s important to use reusable chopsticks and understand the effects of disposable chopsticks. This one product is affecting our entire planet and takes part in global warming that affects every living thing on Earth and it must be stopped. Many industries are hurting the environment and the disposable chopstick industry is one of them. No one would have anticipated the use of chopsticks having so much background in essentially hurting the environment. So what can we do? A small difference can make a large effect and we can make one if we start by buying reusable chopsticks. References Bennett,lauren. ‘Deforestation and Climate Change’Climate Institute, 18 April. 2017, http://climate.org/deforestation-and-climate-change/ Butler, S. (2019). A Brief History of Chopsticks. [online] HISTORY. Available at: https://www.history.com/news/a-brief-history-of-chopsticks [Accessed 17 Dec. 2019]. Dewey , caitlin. ‘China's disposable chopstick addiction is destroying its forests’The Washington Post,WP Company, 29 April. 2019, https://www.washingtonpost.com/news/worldviews/wp/2013/03/14/chinas-disposable-chopstick-addiction-is-destroying-its-forests/ Nuwer, Rachel. “Disposable Chopsticks Strip Asian Forests.” The New York Times, The New York Times, 24 Oct. 2011, https://green.blogs.nytimes.com/2011/10/24/disposable-chopsticks-strip-asian-forests/. Rodgers , greg. “Watch Out: Those Disposable Chopsticks May Be Poisonous!”TripSavvy, TripSavvy, 08 Jan. 2019, https://www.tripsavvy.com/disposable-chopsticks-may-be-poisonous-3976797 Song, Juliet. ‘5 Reasons Not to Use Disposable Chinese-Made Chopsticks”www.theepochtimes.com, 05 Feb. 2016, https://www.theepochtimes.com/5-reasons-not-to-use-disposable-chinese-made-chopsticks_1958401.html ![]() By Diego Juarez 1. Introduction When Apple’s AirPods first came out in 2016, it seemed as though it would be a failed project on Apple’s part. They were ridiculed all over the internet and its spawned thousands and thousands of memes, implying that they’d all get lost or that some sort of “string device” would be needed for them. Surprisingly, in the present day it seems that AirPods have not suffered any ill effects from all the ridicule, as it’s quickly become a status symbol and a sign of wealth. In fact, it almost seems as if jokes regarding AirPods and their price being reserved for the wealthy elite made them coveted by more people overall, especially when there are more expensive wireless headphones on the market that haven’t received the same attention. Chrissy Teigen came under fire after tweeting that “[her] mom treats her air pods like they’re disposable. Buys a few a month. She says they would be easier to not lose if they had… a cord.” (Teigen) This tweet was treated as tone deaf and it brought up discussion on wealth inequality and how rich individuals are out of touch with the reality many people face. 2. A Short History of AirPods Despite the AirPods debut in December 2016, the first mention of them can be traced back to 2011. On March 29, 2011, Jorge S. Fino filed a patent for earphones that could work without wires. While Fino was listed on many Apple patents, it seemed as though wireless headphones would never be a reality for Apple due to Steve Job’s stance on Bluetooth which he had mentioned as early as 2005. He reportedly told the media that “There are quality issues – the bandwidth isn’t high enough, and even if it does get there someday, people don’t want to recharge their headphones.” (Jobs) While these may have been seen as valid concerns in 2005, advancements in technology have made Bluetooth bandwidth strength a non-issue, and in regard to charging; it seems that people have simply gotten used to charging so many devices, that adding one more to the list is acceptable. After the trademark and sufficient reasoning to introduce wireless headphones, Apple decided that they would have to do one more thing before announcing AirPods. They announced with the launch of the iPhone 7 that they had removed the headphone jack on iPhones, and it was all tech enthusiasts could talk about for weeks. After this, they released AirPods and were met with mixed responses, but the tune has changed, and Apple has sold millions of AirPods since. Including the new AirPods Pro, its estimated that Apple has sold over 3 million AirPods over the 2019 Black Friday weekend alone. 3. Lens/Framework 1: Environmental Ethics In the textbook we’ve learned that environmental ethics consists of competing ethical systems regarding humans and their treatment of non-human nature. We usually tend to look at nature from an anthropocentric view, and it’s shown not only in the materials used to make AirPods, but in the design itself. Each pair of AirPods comes with three Lithium batteries, one in each pod and one in the charging case. The process of getting Lithium is difficult in itself, and it uses up a vast amount of resources. Due to recent efforts to clean up the planet, including China’s push towards more electric vehicles in 2015, the demand for lithium has skyrocketed and the price of it has doubled in just two years. While this is all in effort to use less fossil fuels, the process of getting Lithium has become an issue of its own. For example, Wired UK states that “in Chile’s Salar de Atacama, mining activities consumed 65 per cent of the region’s water. That is having a big impact on local farmers – who grow quinoa and herd llamas – in an area where some communities already have to get water driven in from elsewhere.” (Katwala) In addition to that, Lithium mining includes a process where the minerals are pumped to the surface and left to evaporate so the remaining Lithium can be mined. Unfortunately, this means that toxic chemicals such as hydrochloric acid can make their way into a region’s water supply. This is only one aspect of the materials used within AirPods, and the worst is that it can’t even be replaced. AirPods are glued together, so when it stops working, they must be thrown out. Since Apple has decided to make these Lithium batteries impossible to remove, it unfortunately isn’t as simple as throwing them in the trash. The product itself becomes next to impossible to safely and profitably recycle. This leads to further issues because it disincentivizes the recycling of materials, it simply isn’t worth taking apart a gadget when it has the potential to blow up if one isn’t careful enough. 4. Lens/Framework 2: Political Economy When it comes to things like AirPods, its effects are unfortunately not limited to the wealthy. Electronics are the product of labor from countless people, all the way from the mining of the materials, to the assembly of the products, and even to the product’s inevitable disposal. This means that not only are people affected globally by the production of these products as they become commodities, but it means that the poorest nations end up taking the brunt of all its negative effects. From the very beginning of the process we know that poorer nations suffer for our technology. For years Apple’s source of cobalt came from the Democratic Republic of the Congo, and it was only after several reports of child labor, worker injuries, and worker deaths that Apple stopped sourcing materials from the DRC specifically. Likewise, Luxshare and Investec are the companies responsible for the assembly of AirPods and they are based in China and Taiwan, respectively. Companies like these are known for employing masses of people and paying them the smallest amount they can. In fact, one of Apple’s manufacturers, Foxconn, was accused by the Chinese Labor Watch in September of 2019 for “a litany of labor violations, including withholding bonus payments, rolling back safety training and employing more temporary workers than China’s laws allow.” (Nikkei Asian Review) Even at the end of its life, the AirPods pose issues for people, though not necessarily the people who can purchase them. Due to its design that includes a glued-in lithium ion battery, workers at recycling plants must perform the risky task of separating the battery from the plastic. It unfortunately seems as though AirPods were designed to eventually be discarded, but they weren’t designed to be safely discarded. 5. Conclusion When it comes to the environment-society relationship we have, it’s disheartening to see that even as motivations for products change, the method always consists of exploiting resources, from minerals to manual labor, with no regard for the treatment of humans or the sustainability of the Earth. AirPods perfectly exemplify this form of thought, because it exhausts plenty of resources in order to be a little bit more convenient than conventional earbuds, while bringing in a huge profit margin for Apple and being discarded in less than two years. The lithium batteries alone show how something could be meant to help, like using less fossil fuels, while just taking from another aspect of the Earth. It’s interesting to think that people think they could save the Earth by simply exploiting its resources from somewhere else instead of trying to solve the issue at hand. References Ahlgrim, Callie. “Chrissy Teigen Apologizes for 'Super Tone Deaf and Icky' Comments about Her Mom Treating $159 AirPods as 'Disposable'.” Insider, Insider, 14 Nov. 2019, https://www.insider.com/chrissy-teigen-apologized-for-tone-deaf-disposable-airpods-joke-2019-11. Albergotti, Reed. “Apple Accused of Worker Violations in Chinese Factories.” The Washington Post, WP Company, 9 Sept. 2019, https://www.washingtonpost.com/technology/2019/09/09/apple-accused-worker-violations-chinese-factories-by-labor-rights-group/. “Apple Supplier Luxshare Plans Camera Module IPO as next Leap.” Nikkei Asian Review, Nikkei Asian Review, 17 Aug. 2018, https://asia.nikkei.com/Business/Companies/Apple-supplier-Luxshare-plans-camera-module-IPO-as-next-leap. Gallagher, William. “The Surprisingly Long History of the Apple AirPods.” AppleInsider, 7 Sept. 2018, https://appleinsider.com/articles/18/09/07/the-surprisingly-long-history-of-the-apple-airpods. Haskins, Caroline. “AirPods Are a Tragedy.” Vice, 6 May 2019, https://www.vice.com/en_us/article/neaz3d/airpods-are-a-tragedy. Katwala, Amit. “The Spiralling Environmental Cost of Our Lithium Battery Addiction.” WIRED, WIRED UK, 3 Aug. 2018, https://www.wired.co.uk/article/lithium-batteries-environment-impact. Mayo, Benjamin. “Analyst Estimates Apple Sold 3 Million AirPods over Black Friday / Cyber Monday Weekend.” 9to5Mac, 2 Dec. 2019, https://ww.9to5mac.com/2019/12/02/apple-airpods-pro-big-hit-black-friday-cyber-monday/. Wiens, Kyle. “Try to Dissect Apple's New AirPods and You'll Shed Blood.” Wired, Conde Nast, 3 June 2017, https://www.wired.com/2016/12/recycle-apple-airpods/. ![]() Palm Oil-By Courtney Ramos An emphasis on the extinction Orangutans Introduction: Sumatran orangutans are only found in in Indonesia, and Bornean orangutans are only found in Indonesia and Malaysia. These countries are also the biggest producers and exporters of palm oil. The beloved orangutan is intelligent, strong, and live a semi-solitary life in the trees. “Like all great apes, orangutans have long lifetimes and low reproductive rates which makes it difficult for them to recover when large numbers are killed” (1970). The biggest threat to orangutans is illegal logging of the tropical rainforest for palm cultivation. The Bornean and Sumatran orangutan are both listed as Endangered and Critically Endangered by the World Conservation Union (IUCN). “It is estimated that between 1,000 to 5,000 orangutans are killed each year in oil palm” (Sataksig 2018). “Deforestation, largely for palm oil in Indonesia has contributed to 3,000 orangutan deaths. At this current rate of destruction, it's predicted orangutans will face complete extinction by 2050” (FOR THE WILD, 2019). Development for palm production annihilates wildlife population and also displaces indigenous people. Not to mention exploitation of workers and child labor. The loss of forests that store carbon contributes to climate change causing up to three times the greenhouse gas emissions of fossil fuels. “The use of bribery or armed force by logging companies is commonly reported” (1970). Green washing palm oil as EU Renewable Directive has also help accelerates destruction. Palm oil monoculture has destroyed precious dense ecosystems; environmental justice is critical. A Brief History of Palm Oil The African oil and fruit palm (Elaeis guineensis Jacq.) are a versatile oil and has been utilized for thousands of years; it is native to Africa and was brought to South-East Asia. Its oil is derived from the mesocarp of the fruit. In the last 50 years there has been a remarkable expansion in cultivation and is now the world’s leading source of vegetable oil. Palm oil products are used in nearly everything’ most popular consumer products ranging from cereal, cosmetics, to cleaning products, and biodiesel. It is desired for products because it increases the consistency, and acts as an occlusive agent (keeping your ice cream and lipstick the perfect texture). It also is resistant to oxidation therefore it gives products a longer shelf life. Palm oil is the second most demanded oil after petroleum used in the world it’s also stable at high temperatures, colorless and odorless. “Indonesia and Malaysia produce and export 85% of palm oil making these countries the world's largest producers” (FOR THE WILD,2019). Palm oil is extremely efficient, “35% of all vegetable oil on less than 10% of the land allocated to oil crops. Alternatives like soybean or coconut oil would need between four and ten times more land to produce the same amount. This would just shift the problem to other parts of the world, threatening other people and wildlife” (Ending deforestation for palm oil, 2019). Although, Palm Oil is an incredible product, and still less of a threat than other hypothetical oil cultivation; I believe the problem lies in mass production and globalization. Lens/Approach 1: Environmental Justice Almost all of Orangutan habitat has disappeared because of the heightened demand and its low prices for palm oil, point to continued growth in production and cropland area in the near future. “Production is centered in Indonesia and Malaysia because they are the most cost-efficient for setting up and running oil palm plantations: wages and production costs are low and ideal ago-climatic factors deliver high per-hectare (ha) yields” (Clay 2004; Basiron 2007). The orangutan is a charismatic, arboreal primate that depends on the lowland rain forests and peat forests of Borneo and Sumatra. Unfortunately, these lands are claimed for establishing oil palm plantations. Orangutans are tree-dwellers and depend on the canopies of trees where they find food playing an important role for the health of the rain forest climbing from branch to branch dispersing seeds. This makes them responsible for maintaining the ecosystem. They are not knuckle walkers, but are forced to the ground after the forest is demolished leaving them vulnerable and starving. Even worse, they are a protected endangered species yet they are hardly protected at all. They are shot as agricultural pests, and are often poached in the illegal pet trade. Lens/Approach 2: political economy Capitalist agriculture expansion is one of the biggest problems for the environment. Deforestation is a symptom of inevitable crises in capitalist agriculture. Globalization is the driver for illegal logging and palm oil cultivation. Production not only affects wildlife but it also affects the people who live there. These forests provide livelihoods to people, many of whom have suffered displacement at the hands of dishonest palm oil companies. These companies find loopholes to increase production ignoring social responsibility to the rights of the local communities and wildlife. It’s sad that we live in a time that we can’t trust that so called, “legitimate” organizations are for the best interest of the planet. For example, The RSPO (Round table on Sustainable Palm Oil), which the WWF (World Wildlife Fund) helped create, charges companies ranging from growers of palm oil to cosmetic brands a fee in order to make a claim that, “sustainable palm oil” is being produced and used. This is controversial because the palm oil value chain has grown and in the hands of a few private sectors. It’s also sad that climate change and environmentalism have been hijacked for a means of “Eco-imperialism”. The demand for sustainability measures pressures corporations and growers to do whatever they have to keep making money. “By setting up "round tables" of industrialists on strategic commodities such as palm oil, timber, sugar, soy, bio fuels and cocoa, WWF International has become a political power that is too close to industry and in danger of becoming reliant on corporate money” (Vidal, 2014). You can bet that money collected for orangutan conservation campaigns was not utilized for their best interest. Essentially, the WWF has sold its soul to corporations and is now helping to “green wash” operations. Conclusion: Unless bold and courageous action is taken now, we would have stood by and watched one of our closest relatives go extinct. “There are over 200 names for palm oil and ingredients derived from palm oil. In 2014 the European Union made palm oil labeling compulsory, but in the United States, it is legal, and common for companies to use the term “vegetable oil” when they really mean palm oil. A good rule of thumb is to avoid any products that have ingredients with the word “palm” in it, i.e. palmitoyl, palmate, palm kernel etc. Another trick you can use is by looking at a product’s saturated fat content, if it makes up more than 40% of its total fat content, it will almost always contain palm oil.” Reluctant to any label claiming palm oil to be sustainable is not true. Conservationists doing the actual studies will tell you that it’s not possible, there is no such thing as sustainable palm oil. “Less than 7% of the total production of palm oil is certified sustainable” (FOR THE WILD, 2019). This is another reminder how everything we do matters and is interconnected. Food wise, it is best to consume locally to help reduce environmental impact. The take away from this paper is to be more aware of what we are doing and what we consume, especially palm oil. Ways to participate in facilitating change is to write officials in both cabinets of Malaysia and Indonesia of our global concern for wildlife. If you learn that a product company is not being transparent of their ingredients, let them know your disgust of palm oil in the product. There also needs to be strengthening of initiatives of protection and security of the forests and wildlife including surveillance and legitimate programs. I believe in what Philosopher Arne Naess who coined “deep ecology” that “once an individual realizes that he or she is not a narrow-enclosed self and properly identifies with all of nature, anthropocentric thought or action becomes-simply -illogical” (Robbins, Hintz, & Moore 2014). ![]() Wagoner, Amelia Geography 300: Global Awareness Object of Concern Paper: Vaseline Introduction It’s a cold windy day, and your skin and lips are getting chapped by the harsh winter weather. Many people might think to use lotion and chapstick. However, Vaseline is both of those in one. In fact Vaseline helps heal wounds, burns and chafed skin. Vaseline doesn’t actually add moisture to your skin it just seals in the existing moisture. It is also commonly used as a lubricant. It is also often used as a makeup remover as it dissolves most types of makeup gently and is safe to use around your eyes. Many people use Vaseline to style their eyebrows. It is commonly used as a chapstick as they have flavors such as Rosy Lips, cocoa butter and creme brulee for use on the lips. Vaseline is even safe and recommended for people with skin conditions such as Rosacea and Psoriasis and helps with aging. (Watson and Cobb, 2019) Beyond skincare uses, Vaseline can also be used to shine leather shoes, remove lipstick stains, remove gum from surfaces, lubricate old or rusty hinges, protect chicken combs from frostbite, stop fungal growth on turtle shells, prevent corrosion in car batteries, control split ends and moisturize dog paws. (Ganninger, 2014) What are the drawbacks to using Vaseline on your skin? For starters, Vaseline does not actually moisturize your skin or infuse it with anything. It simply locks in what your skin already has. That being said, it can also lock in dirt and oils present your skin if you don’t apply it to clean skin. It is also thick and might lead to breakouts in people with acne prone skin. If your skin is oily Vaseline is most likely not going to be a good moisturizing option for you. It also absorbs into your skin much slower than many other moisturizers and a layer of it will always remain on top of your skin. (Watson and Cobb, 2019) Personally I used Vaseline Rosy Lips everyday as a chapstick and it is my favorite chapstick. I have very sensitive skin and my lips used to peel off when I used Burt’s Bees Pomegranate chapstick. I loved the little bit of color that came with it but hated the reactions I would have. When I found the Rosy Lips Vaseline it was amazing, a little touch of color and moisture that really lasted. I never actually knew it doesn’t add moisture to your lips until I started researching for this project. A Short History of Vaseline Petroleum jelly was initially a byproduct of oil production. It was discovered by Robert Cheseborough in 1859. (Ganninger, 2014) Oil workers in Titusville, Pennsylvania were using what was known as “rod wax” at the time to heal cuts and burns. The wax was removed from oil rig pumps. The wax caused equipment to malfunction so Cheseborough began collected the unwanted substance. By 1872, he had created and patented a process of distilling the thinner and lighter oils from the mixture. As a result of this he created a light colored gel. The whiter jellies have been refined more. To demonstrate how his product worked, he would travel around New York and burn his skin with acid. He would then show how he could heal himself using the new petroleum jelly. He opened his first factory in 1870 and called the product Vaseline. Vaseline is a mix of hydrocarbons with water-propelling properties which make it extremely effective at sealing in what it is put over. Cheseborough believed in Vaseline’s healing properties so strongly that he advocated for eating a spoonful of it a day. (Ganninger, 2014) On Vaseline’s website they have a timeline of their company. This timeline notes important events in the products history. For example, the first ever successful North Pole expedition where Vaseline was thought to play a very crucial role. They also state that their product was essential in World War II. They then joined forces with Ponds, created lotion and launched a “Healing Project” which provides dermatologist care, Vaseline and other medical supplies to people in need. They hope to aid 5 million people by 2020. (Vaseline.com, 2019) Lens/Framework 1: Environmental Ethics Is dry skin an environmental issue? It is the result of environmental conditions and most people spend any range of money on products to combat their dry skin. Therefore the first lens I am going to approach Vaseline with is that of environmental ethics. (Robbins, 2014) Vaseline is a special product as it is made from refined petroleum. Is the simple moisturizer that most people in the world are familiar with, a result of a process causing so many of the environmental hardships we face today? The simple answer is yes, but is its role big enough to say the product is unethical? Luckily someone has already asked this question which lead me in the right direction to finding the answer. When asked the question “Are Vaseline and other Petroleum products environmentally sound?” The Guardian answered that not all Petroleum products are environmentally sound and we should move away from our dependency on them. However, they place Vaseline at the bottom of the list of byproducts to be concerned about. That being said, they do point out that if the woman who asked the question is concerned about putting petroleum jelly on her face that there is a growing portion of the cosmetics industry that is creating products free of petrol carbons. For the most part, the Guardian does not seem concerned about Vaseline depleting the world’s oil reserves but recommends that if you are worried about impacts on your skin that you should switch to a different product. The “Healing Project” in which Ponds and Vaseline are working together to offer aid to survivors of natural disasters and those in need, also plays a role in their environmental ethics. These two companies have joined together to help combat the human health crisis. Vaseline is also a byproduct of an already existing mining process. If the “rod oil” was not made into Vaseline it would be disposed of some other way. The process of turning “rod oil” into Vaseline is itself not very harmful to the environment. There is minimal packaging on most Vaseline and it is much more affordable than many other products, making it accessible to the masses for all of its various uses. Lens/Framework 2: Risks and Hazards What are the risks with using Vaseline? Like most things, this will depend on your culture’s way of looking at it. (Robbins, 2014) For the most part, I have not found a lot of risks or hazards that are associated with the production or usage of Vaseline. However, the obvious environmental hazard that is associated with the production of Vaseline is where it originates. Oil extraction can be extremely hazardous to the environment that it is being rigged out of. When oil spills onto water, it does not allow oxygen to get through to the plants which stops photosynthesis. It also harms and kills animals and insects, disrupts the food chain and takes a very long time to recover. (Oilcare.com) Oil spills can also have severe consequences on the human environment as they can destroy drinking water and are very expensive to clean up. They can also make water unsuitable for irrigation and damage the effectiveness of water treatment plants. (Oilcare.com) If oil spills occur next to buildings the vapors can make the building uninhabitable. This can be very expensive and in some cases if there is too much damage, the entire building may need to be demolished. Oil and gas drilling have serious consequences on the environment even beyond spills. These include disrupting wildlife habitat, species like Antelope and mule deer in Wyoming have been dramatically affected by drilling. Water and air pollution also harms local environments. More than 12 million people in the US live within ½ mile from oil production or processing plants. Their emissions contribute to climate change and ruin gorgeous landscapes. Extraction also turns away visitors because people don’t want to see or hear drilling when they go into the wilderness. (wilderness.org) Conclusion All things considered, I think Vaseline is an environmentally sound product. While it is a by product of an extremely destructive process, this process does not exist solely for the product of Vaseline. In fact, when the process originated the “rod oil” slowed down oil production and was a nuisance to the process. Vaseline has also launched the “Healing Project” in order to give back to the global community. While this does not lessen the effect that oil production has on the environment, it does make it easier to feel okay using the product and in turn supporting the company responsible for it. Vaseline is a fairly inexpensive product that works wonders on the skin, lips and has many other uses, bodily and elsewhere. The next time Humboldt has a cold and windy day, you burn yourself, or you get gum on your clothes, you can feel okay about reaching into your backpack or medicine cabinet and pulling out your Vaseline. However, I do not recommend eating a spoonful of it a day. Bibliography Ganninger, D. (2014). The Amazing History of Vaseline (aka Petroleum Jelly) - Knowledge Stew. [online] Knowledge Stew. Available at: https://knowledgestew.com/2014/12/the-amazing-history-of-vaseline-aka.html [Accessed 27 Nov. 2019]. “The Impact of Oil on The Environment.” Oil Care Company, 2015 OIl Care Campaign , 2015, http://oilcare.org.uk/what-we-do/impacts-of-oil/. Robbins, Paul, et al. Environment and Society: a Critical Introduction, Critical Introductions to Geography. Wiley, 2014. Vaseline.com. (2019). Home. [online] Available at: https://www.vaseline.com/us/en [Accessed 2 Dec. 2019]. Watson, K. and Cobb, C. (2019). Vaseline on Your Face: What to Know, How to Use It, Pros & Cons. [online] Healthline. Available at: https://www.healthline.com/health/vaseline-on-face [Accessed 27 Nov. 2019]. “7 Ways Oil and Gas Drilling Is Bad for the Environment.” The Wilderness Society, 9 Aug. 2019, https://www.wilderness.org/articles/blog/7-ways-oil-and-gas-drilling-bad-environment. Sharks are often portrayed as sea monsters thirsty for human flesh, but in reality humans are the ones hungry for shark. Shark trade has been on the rise due to the high demand for shark related products. The global shark trade is valued at nearly one billion USD and it is estimated that one hundred million sharks are caught annually. Sharks are valued for their meat, skin, liver oils and above everything else their fins. Shark finning (the harvesting of the shark’s fins and discarding the carcass at sea) is the most exploitive act of shark killing due to the process of only using 6.5% of the shark’s body mass. The reason shark fins are valued so much is because they are used to make traditional shark fin soup, a rare delicacy in Chinese culture. Though many countries are involved in the shark fin industry the biggest producers annually are Indonesia, India, and Spain. The main importers of the shark’s fins are mostly Asian fish markets such as China and Singapore. In particular though Hong Kong has historically been the global hub for trading fins, which acts as a mass importer and re-exporter for international markets. These shark markets have little to no regulations put in place, causing there to be a big gap in information on the number of sharks being harvested. A modern day tragedy of the commons may be upon us if the shark industry isn’t seriously monitored.
In Chinese culture shark fin soup has been around for centuries, first originating popularity during the Song and Ming dynasties. In earlier decades’ wealthy individuals were the primary consumers of shark fin soup, only accounting for a small percent of the population. Often the consumption of shark fin soup indicated wealth and social hierarchy. This all changed though when China’s economy opened in the 1980’s pulling thousands out of poverty and throwing them into a new growing middle class. This new found wealth among the middle class meant more people in demand of shark fin soup. As more Chinese citizens gained higher social status through wealth, the more the demand for the delicacy grew. The relationship between consumption and Chinese culture plays a big role in global shark exploitation. With a ten-centimeter dorsal fin selling for about four hundred and fifty USD this makes the shark finning industry a very profitable business. Money means nothing though for marine ecosystems. Sharks have been around for millions of years and have evolved to match the environmental pressures put on them, that all changed though when shark fins became popular. Having a very slow growth rates and producing few young means shark population can’t be sustained to meet the economic demand of them. Due to poor regulations sharks aren’t given enough time to replenish their populations. An ocean without sharks mean trouble for the rest of the marine ecosystems. It has been reported in the pacific that long line fishing bycatches of apex predators such as sharks has fallen about 9% each year and more increasingly other fish species, not commonly caught are becoming more abundant. This may indicate that exploitation of sharks may be starting to shift the community structure in oceans. Sharks maintain community structure by feeding on many other species lower in the food trophic levels, which in turn prevents one species from over monopolizing a limited recourse. If sharks were taken out of the picture it could mean a potential collapse in the marine environment. The exploitation of sharks can’t continue sustainably, other options though are available that benefit humans and these creatures of the deep. The shark watching industry currently generates up to a little over a quarter billion in USD a year, and supplies over ten thousand jobs. With the industry expected to double within 20 years it means it has the potential of coming more valuable than the shark fin industry. Many developing coastal communities use shark finning as a way to support themselves, but with proper planning and development they can double their earnings through ecotourism. This also benefits conservation scientists giving them ability to study shark’s roles in ecosystems. Implementing shark tourism means economic prosperity for generations to come, compared to the shark fin industry, which at the rate its going will only lasting a couple more decades. Also education among the Chinese citizens of the practices that go into harvesting fins could slow the amount of consumption and inspire people to ban the delicacy. Lastly governments from around the world need to set global regulations and monitoring of fisheries so that scientists can get accurate data that could help lead to better conservation efforts of sharks. With just a little effort two of the earths top predators can live in symbiosis together. Bibliography Ariz JA, Delgado de Molina ML, Santana JC (2006) Body-weight (dressed weight) and fin-weight ratios of several species of shark caught by Spanish longliners in the Indian Ocean. Inter- American Tropical Tuna Commission (IATTC) Working Group to Assess Stock Assessments 7th Meeting. Document SAR-7-09, San Diego Barker, Michael J., and Vera Schluessel. "Managing Global Shark Fisheries: Suggestions for Prioritizing Management Strategies." Aquatic Conservation: Marine and Freshwater Ecosystems 15.4 (2005): 325-47. Web. Camhi M, Fowler S, Musick J, Bräutigam A, Fordham S (1998) Sharks and their relatives: ecology and conservation. Occasional paper of the IUCN Species Survival Commission 20. IUCN, Gland Camhi, M. (1995). Industrial Fisheries Threaten Ecological Integrity of the Galapagos Islands. Conservation Biology,9(4), 715-719. Retrieved from http://www.jstor.org/stable/2386979 Cisneros-Montemayor, A.M., Barnes-Mauthe, M., Al-Abdulrazzak, D., Navarro-Holm, E. and Sumaila, U.R. (2013) ‘Global economic value of shark ecotourism: implications for conservation’, Oryx, 47(3), pp. 381–388. doi: 10.1017/S0030605312001718. Dent, F. & Clarke, S. 2015. State of the global market for shark products. FAO Fisheries and Aquaculture Technical Paper No. 590. Rome, FAO. 187 pp . Dell'apa, Andrea, M. Chad Smith, and Mahealani Kaneshiro-pineiro. "The Influence of Culture on the International Management of Shark Finning." Environmental management, vol. 54, no. 2, 2014., pp. 151-61doi:http://dx.doi.org/10.1007/s00267-014-0291-1. Fong, Q.S.W. and Anderson, J.L. (2002) International shark fin markets and shark management: an integrated market preference-cohort analysis of the blacktip shark (Carcharhinus limbatus). Ecological Economics 40, 117–130. Friedlander, A., & Demartini, E. (2002). Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: The effects of fishing down apex predators. Marine Ecology Progress Series, 230, 253-264. doi:10.3354/meps230253 J. D. Stevens, R. Bonfil, N. K. Dulvy, and P. A. (2000) Walker The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems ICES J. Mar. Sci. 2000 57: 476-494. Jessica S, Even Jaws Deserves to Keep His Fins: Outlawing Shark Finning throughout Global Waters, 24 B.C. Int'l & Comp. L. Rev. 409 (2001), hp://lawdigitalcommons.bc.edu/iclr/vol24/ iss2/8 Abraham Castrejon
Professor: Dr. Laura Johnson Geography 300 Animal Agriculture Animal agriculture has been revolutionized the last couple of decades to increase profits and consumption of meat products, but this increase in profits comes at a huge cost for the environment and ultimately for the entire Planet Earth. Meat has been regarded as an essential part of our diet bringing good sources of protein, but the natural resources to grow animals for human consumption are astronomical. For example, most of the grain grown in the United States is used to feed industrial farm animals, and the land needed to grow those crops take huge chunks of land. Cows, pigs and chickens are the most popular animals produced in massive quantities in the animal agriculture industry, and questions arise if this practices of farming are cruel. Corporate animal agriculture has no morals or ethics towards environmental degradation ultimately affecting everyone on the long-run and short-run, and this is done in the name of economic progress and innovation. The alternative to animal industrial farming would be growing fruits and vegetable that would take extremelly less land and less resources to produce, but this is just an idea that still has to be implemented at the corporate sector. The animal agriculture industry has managed to get away with massive pollution and mass murder of animals and ecosystems by the ag-gag laws which excuse their activities by the federal government, and this has been implemented in 12 states of the United States. The close relationship between animal agricuture industry lobbyists and government officials has permited the unfettered practices of the industry to continue, and all of this is done in the name of “national security, public safety, and trade agreements” (Hedges). Since the 1940s there has been “escalating farm animal populations—in large, confined operations, in particular—have significantly increased methane emissions from both animals and their manure” and methane is 24 times for pollutant than carbon dioxide (Koneswaran). The average “American consumes 110 pounds of red meat and 74 pounds of poultry per year” , and this comes out to be around 870,000 gallons of fresh water used per US citizen a year (Akhtar). It is natural for a thinking person to question the practices of the animal agriculture industry, and ask oneself if this is really helpful for humanity and our future. The Earth is composed of natural ecosystems that have been shaped by evolution over the millenia, and we humans have been capable of bending the rules of nature and make it work for us. The planet is a living entity that give us a chance to enjoy and benefit from it resources, but there is questionable practices that we humans do that harm the wildlife. For example, in the animal factory farms pigs are treated in a horrible immoral ways by placing them in “farrowing crates” which is a “two by seven feet” cage, and they are placed there impregnated (Robbins). After the pig has delivered piglets the pig is “impregnated again” to make it as profitable as possible, and this is the way most of the factory farms function (Robbins). It is essential to question if this is really how we want animals be treated, and also it makes you think if this is really neccesary to do in such a big scale. For the animal agriculture bussiness every single animal has to produce something because if not it is considered “wasted capital” (Robbins). The environment takes “more greenhouse gas emissions than all worldwide transportation combined — cars, trucks, trains, ships and planes” due to animal industrial farming (Hedges). In the whole world livestock produces “32,000 million tons of carbon dioxide per year” and “65 percent of all emissions of nitrous oxide, a greenhouse gas 296 times more destructive than carbon dioxide” (Hedges). The animal agriculture industry is a brilliant example of the corporate land grab that has polluted most of the world, and it is always looking for ways to making more profits. Countries such as Brazil have suffered the deforestation of the amazon to place massive animal farms to raise cows mostly, and the ones that suffer are the native peoples of the amazon and the ecosystem as well. Destroying the lungs of the world is no impediment for this corporate machine to gain power over governments, and the interest of Earths health has been replaced for the lust for money. Ultimatelly the citizens of the world has the choice to either deny supporting this, or support it by buying the meat products. The destruction of ecosystems around the world for the mass production of farm animals is directly correlated with the deterioration of democracies around the world including the United States. The citizen is rendered powerless when it decides to expose the true practices of this industry by the approval of the ag-gag laws that “make it illegal to take undercover photos or videos on farms” (Keim). If a U.S. citizen tries to liberate animals from this farms or expose the farms practices he or she is considered a “terrorists under U.S. law”, and can get a “10-year prison term and a $250,000 fine under the Animal Enterprise Terrorism Act” (Hedges). The feeling of disgust or disapproval of this businesses comes with many questions to one-self of how can one be an agent of positive change of this environmental and moral problem. A single human being is able to waste so much resources by just buying meat at the grocery store, and this is almost always out-of-sight of the consumer. It takes an estimated 5000 gallons of fresh water to produce one pound of beef, and around 1000 gallons of water to produce a gallon of milk. This numbers are directly connected to what the cow eats, which is mostly soy crop, and this is because soy crop production “consumes 56 percent of the water used in the United States” (Hedges). Globally “eighty percent of the world’s soy crop is fed to animals, and most of this soy is grown on cleared lands that were once rain forests” (Hedges). The Intergovernmental Panel on Climate Chage “predicts increases of 1.8–3.9°C (3.2–7.1°F) by 2100”, and this increase will ultimately worsen climate conditions for all animal life (Koneswaran). These temperature increases are more pronounce than the last century, “when average temperatures rose only 0.06°C (0.12°F) per decade” (Koneswaran). All this is happening while government officials fail to recognize all this warning signs that scream to us to change our economic models, but the shortsightedness of their rhetoric and the populations complacency is a suicidal combination. This change in global temperatures and disastrous climate events will risk the stability of democracies around the world, and this is because maybe the only way to contain great numbers of people who may revolt due to starvation, critical unemployment, and refugee migrations will be with governmental force suppresion. In the present day an “estimated 6 million children across the planet die each year from starvation and as hunger and malnutrition affects an additional 1 billion people” , the numbers of people suffering in the future will seem to continue to grow as food and fresh water availability decreases (Hedges). Today the human population in the world is approximately 7.7 billion people, and the population of land animals for human consumption are “approximately 56 billion” (Koneswaran). This population of land animals is 7.3 times greater than humans today, and this animal population is “expected to double by 2050 with most increases occurring in the developing world” (Koneswaran). The data shown here is without considering if the planet resources will let us continue this practices, and also it may collapse in itself due to extreme environmental degradation before that time gets here. The carbon dioxide released by the animal agricuture industry is bigger than all human transportation machines combined, and it is becoming more and more pressing issue that is already causing powerful hurricanes more frequently, floodings all over the world, rising global temperatures, severe droughts, migration of refuges and the melting of the ice caps. The “Intergovernmental Panel on Climate Change” expects that “water availability may be impeded, and extreme weather events are likely to become more common and more serve” (Robbins). This is happening while the United States top government officials are plagued with a mutual accordance that climate change does not exist, or do not even consider it when making policy decisions. Instead of trying to regulate the animal agriculture and including also the oil industry, government officials facilitate these organizations to even further their expansion, and this is done with the promise of development for the future. Rethinking the way we interact with the natural world should be urgently done, and social boundaries, collective work, citizen autonomy and empowerment should be developed. Social boundaries means having restrictions to the big corporations to not have huge gaps of land to exploit as they wish, and strict laws should be put in place so that it would ensure a healthy preservation of the ecosystem. The industry when left alone and out-of-sight of the citizen has proven to be a very dangerous thing, so it is essential that “specific rules for managing the resources are made by the resource users themselves” which is ultimatelly in the end the citizen (Robbins). The citizen has the power to choose what kind of world does it want to live in, and to regain the power of the people means gaining a better understanding of our relationship with the planet. A system of “monitoring needs to exist so that” corporation’s “behaviors and users are known to the” general public, and this monitoring is essential so consumers know the story behind their purchase (Robbins). The differences between the human species, such as politcal orientations, economic doctrines, international boundaries and industry development have caused the rise of tensions between countries, and have caused problems all around the world. The animal agriculture industry is just one of many problems that is pressing on humanity, and it is an urgent one to solve. We all benefit form what the Earth has to offer, and by “treating the global climate as a common property” then we can imagine a new way of reasoning (Robbins). A way of thinking that will propel us to worry always about the health of the Earth, and to always hold up those who treat her unjustly accountable. The economic doctrine of unfettered capitalism is the real danger to the future of humanity, and puts at risk the health of the biosphere encompassing all wildlife. The detereoration and depletion of natural resources is what this system depends on, and since governments become more easily manipulated by corporate power it is expected to grasp even more power. This system is regarded as a system of inverted totalitarianism by former philosopher Sheldon Wolin, and this form of tyranny is not like the classical totalitarianism but rather a behind the curtain totalitarianism. The animal agriculture industry represents the disdain for all life. The United States is imploding in itself, sacrificing democracy for corporate rule, and this is seen in the bailout of Wall Street criminals who are responsible for “massive acts of fraud, causing widespread suffering, and be rewarded with trillions of dollars in government bailouts” (Hedges). This doesn’t make sense in a real democracy in which those who cause large scale social distress are not hold accountable, and the animal agriculture industry enjoys of this governamental protection. The alternative to meat is veganism, which is a diet free of any animal product, and by being vegan one can contribute to the enviroment in big positive way. If an individual decides to become vegan he or she “will save 1,100 gallons of water, 20 pounds CO2 equivalent, 30 square feet of forested land, 45 pounds of grain, and one sentient animal’s life every day” (Hedges). The animal agriculture industry produces “130 times more excrement than the entire human population” in the US, and all this waste is responsible for “global warming, water and soil pollution, air pollution” and biological hazards (Hedges). By deciding to become vegan is to respect life, since we actually don’t need to eat meat to be healthy. It would be a radical progressive step forward to become a vegan society since we could grow “twelve to twenty times the amount in pounds of edible vegetables, fruit, and grain as in pounds of edible animal products” (Hedges). This is essential if we want forests and natural ecosystems to continue to exist since animal agriculture destroys to much of it. We humans share a common “property” which is the planets resources, and “cooperation is neccesary for the best outcome” (Robbins). If we become more isolated and unwilling to become citizens of radical progressive change we can be faced with mass extinction of ecosystems and animals including the human species. Work Cited Akhtar, Aysha Z. “Health Professionals' Roles in Animal Agriculture, Climate Change, and Human Health” . Sciencedirect.com. February 2009. 9 December 2018. https://www.sciencedirect.com/science/article/pii/S0749379708008982 Hedges, Chris. “A Haven From The Animal Holocaust”. Truthdig.com. 3 August 2015. 9 December 2018. https://www.truthdig.com/articles/a-haven-from-the-animal-holocaust-2/. Web. Hedges. Chris. “Saving the planet one meal at a time”. Truthdig.com. 10 November 2014. 9 December 2018. https://www.truthdig.com/articles/a-haven-from-the-animal-holocaust-2/. Web. Keim, Brandon. “Factory Farm From Above: Satellite Images Of Industrial Farms”. Wired.com. 16 September 2013. 9 December 2018. https://www.wired.com/2013/09/mishka-henner-factory-farms/. Web. Koneswaran, Gowri. “Global Farm Animal Production and Global Warming: Impacting and Mitigating Climate Change”. ncbi.nlm.nih.gov. 31 January 2008. 9 December 2018. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2367646/. Web. Robbins, Paul. Hintz, John. Moore, Sarah A. “Environment And Society. A Critical Introduction. 2nd Edition.” . Massachusetts: Blackwell Publishing Ltd, 2014. Print. Created initially in 2003 by a Chinese pharmacist, Hon Lik and later introduced in to American markets in 2007, e-cigarettes have exploded in popularity as a new "alternative" to traditional tobacco products. Many e-cigarette manufacturers boast that their products are both safer and more health-conscious than traditional cigarettes, while evidence to the contrary continues to pile up daily. The perception of smoking cigarettes has changed over the last several decades, however, a new market has emerged with the popularity of "vaping"; the youth market. The big tobacco companies have begun their assault on the youth of our country and all over the world, by creating a product that appears to be more technologically advanced and far less taboo than a rolled cigarette that produces a pungent odor. E-cigarette companies have manufactured flavors and packaging that are far more enticing to adolescents, who lose the perception that tobacco is a harmful additive to their body. E-cigarettes (vapes) pose nearly the same health risks as traditional cigarettes with and added danger, the effects of their components on the environment around us. From the production of the addictive substance nicotine, to the disposal of the vapes heating source (the lithium ion battery), the environment is being taxed with every new vape being put on the market. Between the inherent health risks of smoking tobacco and the environmental impact caused by the manufacturing of e-cigarettes, this hot commodity is poised to sue a major issue for our future generations. E-cigarettes can go by many names; electronic nicotine delivery systems (ENDS), e-cigs, vapes, mods and tanks. Although they have many names, all these devices were designed to do the same thing, be an alternative to smoking traditional cigarettes. The first e-cigs were produced by a Chinese pharmacist, who was looking to offer an alternative to smoking traditional cigarettes for the nearly 350 million smokers in the country. While still containing the addictive chemical nicotine, e-cigs were thought to be safer because they did not require combustion of any kind and lacked the known chemicals found in many cigarette brands. The e-cigs quickly gained popularity and eventually made their way stateside in about 2007 (Nguyen, Aamodt 2013). The first-generation e-cigarettes produced were made to look almost identical to that of an actual cigarette. They had the same coloring and shape as a traditional cigarette. The problem with the first generation, was that they were disposable and could not be recharged or refilled. The second generation of e-cigs came out looking more like a sophisticated pen or battery pack with a mouthpiece. The second-generation e-cigs included a rechargeable battery component and a much larger design. These second-gen e-cigs were refillable and allowed the user to swap out different flavors of “juices” to suit the smokers’ interests. The second-generation gained immense popularity and gave way for the third-generation e-cigs to become more popular than ever before. The third-generation e-cigs were made to be the largest yet and were able to be modified to have different heat settings, hence the name “mods”. Many more popular designs were created to look even more sleek and inconspicuous to the untrained eye. Many users were interested in a more understated design, that would allow them to smoke in more settings while undetected. The e-cigs produced today contain a liquid solution that is heated by in internal coil or disc to produce a smoke similar to that of an actual cigarette. Although many refer to using e-cigarettes as “vaping”, the device does not produce a vapor at all. Instead of a vapor, the e-cig produces an aerosol which contains chemical particles produced by the liquid solution and the device itself (Truth Initiative 2018). The typical liquid cartridge of an e-cigarette contains the nicotine equivalent of a pack of traditional cigarettes. Each company is different and there is a discrepancy about just how many “puffs” different cartridges contain. Unlike the varying flavors and “puff count” of the e-cigarette cartridges, all e-cigs contain lithium batteries to supply the heating source for their liquid. Lithium-ion batteries are found in almost every electronic device as a main power source alternative to fossil fuels or disposable batteries. Billions of dollars’ worth of these nicotine enhanced, lithium batteries are making their way to the hands of consumers globally (Nguyen, Aamodt 2013). The questions about safety to the users both immediately and from their surrounding environment must be called in to question. Whether it be the harmful chemicals being put in to the liquid solutions or the elements being drawn out of the earth to manufacture e-cigarettes, a long look needs to be taken at the e-cigarette industry to adjust to the changing morals of the billion-dollar industry. The first lens I’d like to take a look at the e-cigarette industry with, is from a perspective on the risks and hazards of the product. Nicotine is an inherently addictive chemical and cigarettes contain known carcinogens, which are cancer causing molecules. Why is it that so many view traditional cigarettes as harmful, but fail to recognize e-cigs as the same danger? I believe that a lot comes from the packaging of the nicotine. The liquid juices appear clear or colored and give off an aroma that is far less abrasive than that of traditional cigarettes or menthols. In actuality, e-cigarette juices contain just as many chemicals as traditional cigarettes, although they lack many of the solid particles ingested when smoking traditional cigarettes. Researchers have found that there are 60+ chemical compounds found in typical e-liquids, with even more being produced once they are heated up into the aerosol smoke (Truth Initiative 2018). The product is so new that there are little studies done on the added chemicals in the e-liquids, but one thing that is for sure, is the abundance of nicotine in the cartridges. Nicotine addictions are sweeping through the youth at an alarming rate. So many more youth are using e-cigarettes than ever before. In a study done by the National Youth Tobacco Survey, the rate of e-cigarette use among high school students has risen 10% from 2011-2017, and use among middle school students has jumped from just .6% to 3.3% over that same period. If e-cigarettes weren’t enough on their own, a report formed by the National Academies of Sciences, Engineering and Medicine concluded that there is “substantial evidence that e-cigarette use increases risk of ever using combustible tobacco cigarettes among youth and young adults” (Truth Initiative 2018). The study showed that among young adults in 2015, 40% of those who used an e-cigarette device also smoked cigarettes. To describe e-cigarettes, it is safe to use the term “gate-way drug”, because it opens the door for nicotine addiction and continuous use of other tobacco products that are potentially more harmful. With e-cigs flying off the shelves at alarming rates to users who may not understand how harmful the components are, there must be a question raised about how we dispose of them. I would argue that the majority of youth do not know the proper disposal techniques for lithium batteries or chemical-laden cartridges. E-cigarettes create a sort of double-trouble effect, meaning they deliver addictive nicotine immediately and follow it up by polluting the planet upon disposal of the device. The second lens that I’d like to look at e-cigarettes from, is the environmental impact of production and disposal of the devices. The use of lithium-ion batteries for nearly all third-gen e-cigarette products, has added to the global desire for lithium over the last couple decades. The production of lithium is a process that destroys the earth at the source and pollutes neighboring water-ways and ecosystems. Lithium is produced by drilling down hundreds of feet to extract mineral-rich brine from salt flats all over the world. Once the brine is too the surface, it is placed in to pools with other chemicals such as manganese, potassium, borax and lithium salts, where they are left to evaporate for 12-18 months. The mixture is filtered down until there is enough lithium carbonate to be extracted and the ions to be added to make batteries (Katwala 2018). At the beginning, lithium is not the most harmful chemical used in the process to the environment. Extractive chemicals such as hydrochloric acid leaking in to nearby waterways has created toxic environments for fish and livestock in countries such as Tibet and Bolivia. The danger from lithium comes from its’ refined form of lithium-ion, which is considered a hazardous material in many countries such as the United States. When lithium-ion batteries are disposed of, many have not been completely de-charged of energy and still contain some of the explosive and corrosive chemicals that pollute our soil. Nickel is often used in these lithium batteries and is one of the more toxic chemicals that can be put back in to the earth when batteries are thrown in to landfills or make their way in to the natural environment. The systems used for creating lithium-ion batteries are the most harmful to the environment and put mining communities at risk for polluting waterways and food sources. The other part of the e-cigarette that can cause environmental harm, are the cartridges themselves. As we have already learned, e-cig cartridges contain 60+ different kinds of chemicals in their plastic containers. Again, one of the most harmful ingredients found in the cartridges is copper, which one research study found is 6.1 times higher per puff than reported previously for conventional cigarette smoke (Lerner, Sundar, Watson, Elder, Jones, Done, Kurtzman, Ossip, Robinson, McIntosh, Rahman 2015). The study also found that residual levels in cartridges showed significant levels of oxidants and free radicals in their aerosols. Oxidants are chemicals that are reactive to oxygen and continue to alter structures of other organic materials. Free radicals are molecules that are extremely unstable and highly reactive with other chemical structures. Free radicals can often damage proteins, DNA and cell membranes by the process of oxidation. Together, these agents are corrosive and damaging to the environment. When cartridges are discarded inappropriately, these molecules can cause a world of hurt for wherever they land. I know that I see cartridges and refill bottles thrown on the ground and disposed of in to bushes around our own community. These discarded items contain major chemicals that endanger the local wildlife, plant life and water systems. Improper disposal of e-cigarette components is a dangerous and extremely harmful process for our environment. From beginning to end, the production and disposal of e-cigs tears the earth apart and breaks it down nearly simultaneously. E-cigarettes are a growing trend that produces harm for both the user and those around them. Not only is the smoking of e-cigs harmful to you and everyone around you, but your purchase of such products endangers communities all over the world. Many of these communities tasked with producing the chemicals that go in to e-cigarettes, are doing so out of necessity. They are doing so to provide jobs for few, at the expense of many. Large companies take over masses of land in South America and Africa to extract the chemicals necessary to produce e-cigs, all the while damaging the surrounding ecosystems. They may provide jobs for some, but they are slowly killing those closest to production and killing the consumers even faster. There is some glimmer of hope as awareness about the dangers of e-cigarettes continues to be on the rise. In one study done on 578 adolescents aged 14-20, 61% had negative overall opinions toward adolescent e-cigarette users (McKelvey, Popova, Pepper, Brewer, Halpern-Felsher 2018). The perspective of e-cigarette use is slowly shifting towards the negative and there is hope in the youth of our nation at least. We must continue to educate on the dangers of nicotine addiction, chemical ingestion and the effects the production of e-cigs has on the environment. Without knowledge, there is no way to build a stigma around the topic of e-cigs. I believe that a stigma is necessary to combat the big tobacco companies attempts to lure in the youth. The industry has adapted and so too does the education level. Letting people know the whole story is critical to the overall success of a movement. Works Cited
Rubber Automobile Tires
Introduction: The United States has a very strong tendency to mass produce almost every product that has been in circulation. The United States auto industry is a multi-billion dollars a year industry; in 2015 there were 263.6 million registered vehicles in the United States. These vehicles include cars, trucks, semi-trucks, and motorcycles so to be generous let's say every vehicle uses 4 tires it doesn't account for the spare or the 18-wheeler semis. The number of tires in circulation for the number of vehicles is roughly 1.05 billion tires on United States roadways in 2015. However, this number could be much higher if we estimate that every car has a spare and that doesn’t include the 12 other tires that semi trucks have. Each tire has two main components the rubber and the wire mesh. The rubber could be natural or synthetic rubber and zinc covered steel wire for the wire mesh. The rubber is used for the car to get traction with the ground in different environmental conditions. The steel wire mesh is used for the reinforcement of the tire so that it can carry the load of an automobile. As you may know, most tires are filled with just air however they are starting to fill the air with nitrogen. For my object, I was concerned about the amount of hazard that we are putting up with on Earth in order to have this commodity from harvesting to manufacturing to disposal. And my second aspect to look at rubber tires is environmental justice there is a lot of injustice happening when it concerns the disposal and harvesting of material for tires. Evolution of the Modern Vehicle Tire: The first pneumatic tires were invented in 1888 by the company Mercedes Benz. Benz also invented the first gasoline powered car which came equipped with these tires. However, these tires aren’t what we might be used to the tires on the first gasoline car looked more like bike tires with spokes attached to a giant metal ring. The tire was completely framed in metal with a small layer of rubber around the edges filled with a small amount of air. Rubber tires became popular after they were used in a famous race in Paris, France called from Paris to Bordeaux in 1895 (Rajan et al). Since they were just like bike tires however they didn’t have any tread on them so on a wet day the tires would just skid off the road. It wasn’t until 1905 that tires started getting made with tread on them. This tread helped increase the friction coefficient that the tire makes with the ground so it allows for safer driving when turning and braking. 25 years later Du Pont an American company successfully developed synthetic rubber which now allows a tire to increase not only in quality but they became significantly cheaper, Henry Ford used this method to make cars more affordable for the average American family. Modern tire structure was invented in 1940 and sought out to improve fuel efficiency. In 1940 in order to relieve the American public from skyrocketing oil prices car manufactures started to replace heavier exterior parts of the car along with this came changes to tires (Rajan et al). In order to help with fuel efficiency, they started to manufacture tires with the steel wire mesh to help with weight distribution and lifespan of the tire. 10 years later the first radial tire was invented which gives us a rotation of the tire (forward facing). These two technological advances are what gave us the modern tire that we see every day. Some recent technology advances are the airless tire by Hankook tire. Not only does this tire only use one type of synthetic rubber without steel wire they are made of recycled tire parts and the production cost and price for these tires are about half (Hankook). Risk and Hazards (Harvesting & Manufacturing): The two main components of car tires are rubber and steel wire mesh that is coated in zinc. The rubber can be one of two materials natural rubber or synthetic rubber, natural rubber comes from trees. Hevea brasiliensis or pará rubber tree is the Earths natural form of rubber. This tree produces a milky sap substance that contains rubber latex and produces every day for 20-25 years (Cain). 70% of Earths rubber manufacturers are the countries Malaysia, Indonesia and Thailand. A risk from harvesting is that these countries are all third world countries and have established minimal employment laws, the minimum wage in Thailand is about $10 a day and $93 per month in Indonesia and $244 per month in Malaysia (website). These trees are described as very laborious since they do need to be sapped every day. These countries have a history of extorting labor from their citizens without providing adequate living situations. The second and more popular tire is the synthetic rubber tire. These tires are much easier to produce because they come from petroleum by-products. Both of these methods helped produce about 33 billion pounds of rubber annually. The main hazard that comes with synthetic tires is the wearing down of and releasing hydrocarbons from the tires. Since petroleum is part of the carbon cycle, petroleum produces a high amount of hydrocarbons which are not great for the atmosphere. Along with being harmful to the atmosphere, a study done by K.E Day took three different types of tires, new, worn, and pieces of breakaway tires were submerged in 300 liters of water. The tests showed that all of these tires leached out toxic chemicals that are unsafe for animals and humans. However, there is some good, once the tires were removed from the water the toxic chemicals were non-volatile and slowly degraded. The last hazard is the steel wire mesh that reinforces the tire. Zinc and lead are among the most prevalent heavy metals found in urban city runoff. The steel wire mesh is coded in zinc and when a tire is worn down the steel comes into contact with the ground and the zinc washes into our sewer systems (Christensen et al.). Mining zinc comes with a huge environmental impact, along with zinc usually nickel and iron are found with it. Ways of purifying zinc for commercial use involves combustion and calcination which is superheating of elements to extract all other elements but zinc. This process fills the atmosphere with carbon dioxide and zinc which contributes to greenhouse gases and climate change. Environmental Justice (Time for a Change): Once upon a time in the United States, we had over 2 billion old used tires littered throughout the country (Motavalli). From these pile up came Colorado's tire mountain which was the largest of the stockpile of tires with an estimated 89 million tires. These tires like I mentioned before release hydrocarbons and leach the water systems with a toxic amount of chemicals that are harmful to humans, animals, and plant life. In 1983, a tire dumb with about 7 million tires caught fire in Rhinehart Virginia sending a plume of smoke 3000 feet high and 50 miles long into the atmosphere and over three states. However, in an effort to reverse the environmental injustice that we created by stockpiling tires throughout the United States we started to re-purpose tires. Today we have broken down the estimated 2 billion tires by 90% by simply repurposing them. In 2009, more than 500,000 tons became ground rubber and playground walkways, mulch, animal bedding, sports surfacing, molded products and auto parts (such as floor mats). Efforts to stop the growing tire piles scatters throughout the United States is been very successful, large companies like Bridgestone sponsored an event to help clean up abandoned tires by waterways and lakes. In 2014 this event cleaned up 802 tires from Del Rio, Texas. After all the efforts were done States started to make it illegal to dumb whole tires in landfills a total of 38 states past this law (Nash). Since we know the hazards of tire runoff and having them as an eyesore what does the United States do? They start to export old worn tires to different Asian counties. China and Vietnam realized that it is cheaper to burn tires as fuel in different factories rather than fossil fuels. However, this environmental injustice affects not only the local region that must deal with the pollution of these factories. Western states started to see an increase in pollutant emissions from the years 2005-2010 when the study was done by Nasa Jet Propulsion Laboratory (Nash). Even though old worn tires have become an eyesore and were made illegal to dump in landfills and have a hazardous runoff, the United States didn't fix the problem we just moved it elsewhere, but still, all of us suffer from this environmental injustice. Conclusion: The United States at one point or another had an estimated 2 billion old or worn tires stockpiled in different locations. The largest pile being in Colorado where the pile of tires exceeded 89 million. From studies done we figured out that tires leach harmful runoff that is toxic for living things including hydrocarbons, zinc, and lead. The history of the tire is fairly recent with the start date of the modern tire in the 1940s. It is astonishing to see that only in 70 years be manufactured enough tires to have 2 billion old ones. With this rapid manufacturing, there are bound to be some risk and hazards. Some risks are exploiting of labor in third world counties that have minimal employment laws. These citizens will work 9-11 hours out in the fields doing back breaking labor. Some hazards are the increase in carbon dioxide, zinc, and lead in urban areas. With all these tires being created there is bound to environmental injustice, we see this in the form of pollutants that travel across the Pacific Ocean and into the air of the western state. The increase carbon dioxide creates a larger greenhouse effect that doesn't allow all reflected sunlight to escape Earth back to space causing Earth to heat up. According to our textbook when looking at the carbon cycle we see that carbon dioxide takes thousands of years to make its way to the atmosphere and in some cases, it takes millions of years. What humans are doing is accelerating the process of filling the atmosphere with carbon dioxide, burning tires because they are an eyesore or we just don't want them in our country is not the answer. We cannot just export our used tires to other counties because we all live under the same atmosphere we must do a better effort of recycling our tires. Reference: Cain, Patrick (2014). How tire company Bridgestone is solving a tricky natural-resource issue. Retrieved from https://www.fastcompany.com/3033390/how-tire-company-firestone-is-solving-a-tricky-natural-resource-issue Christensen, R. Erick, Guinn, P. Vincent. (1979) Zinc from automobile tires in urban runoff. Retrieved from Civil Engineering Database Day, K.E. (1994) Toxicity of leachate from automobiles tires to aquatic biota. Retrieved from Google Scholar. Motavalli, Jim (2014). Americas Tire mountains: 90% are gone thanks to recycling programs. Retrieved from https://www.mnn.com/lifestyle/recycling/blogs/americas-tire-mountains-90-percent-are-gone-thanks-to-recycling-programs Nash, Leah (2016). California’s old tires cross the ocean and come back as smog. Retrieved from http://www.takepart.com/feature/2016/02/12/tire-recycling-california-smog Rajan, Raghuram, & Volpin, Paolo, & Zingales, Luigi (1997). The eclipse of the U.S tire industry. Retrieved from http://gsblgz.uchicago.edu Robbins, P., Hintz, J., & Moore, S. A. (2013). Environment and society: a critical introduction. Retrieved from https://ebookcentral.proquest.com S. H. Cadle and R. L. Williams (1979) Gas and Particle Emissions from Automobile Tires in Laboratory and Field Studies. Rubber Chemistry and Technology: March 1979, Vol. 52, No. 1, pp. 146-158.
For my chosen object of concern, I focused on an object that is abundantly present in our lives and all throughout the world. Although we live in a complex world and society that uses numerous environmental and physical harmful elements and processes to produce our commodities that support our style of living, one of the less looked at entities is the use of plastics and what they eventually become – microplastics. These plastics are a part of almost every item that involves plastic as a part of its construction, included in baby toys and bottles, pet toys and dishes, our own dishes, cosmetics we put on our face, and so forth. They are made of a complex mixture of chemicals that have chemical additives and residual monomers (Environmental Research and Public Health, 2017). The comprehension of the risks posed to our environment and potentially human health is critical to understanding why microplastics pose such harmful implications to the well-being of our ecosystems and what we think to be the future of our Earth. We will delve into the risks and hazards produced by the presence of these plastics in our environment, followed by the health implications they could risk to our health.
During World War II, a huge boom in the expansion of the plastics industry in the U.S occurred due to the desire to conserve natural resources for the war. This lead to the production of synthetic alternatives, such as plastic, as the new primary resource. Plastics replaced traditional materials used in various items like steel, glass, paper, and wood and were thought of as a great opportunity to gain wealth through its inexpensiveness, what was considered to be safe at the time, and the fact that people could use it to shape nearly anything they pleased (Chemical Heritage Foundation, 2011). After the war was over, Americans had more money to spend and nearly everything they bought was made of or contained plastic. It wasn’t until the 1960’s when Americans had started to become more aware of environmental issues that the finding of plastic debris in oceans and additional ecological implications were occurring due to human negligence were beginning to stir cognizance among the American people (Chemical Heritage Foundation, 2017). One of the biggest issues surrounding the use and waste of plastic is the fact that it remains in the environment forever, never breaking down. The industries that produced plastics came up with recycling programs, making consumers think that it could be properly and responsively taken care of after its use, but in reality plastics still ended up in landfills and the environment, not necessarily being a very effective solution. Though so much of our waste comes from bags, bottles, and other disposable items, the majority of the rubble found in our oceans is the broken-down remains of what used to be a larger form of plastic – microplastic. How does this tiny debris make its way inside of our oceans? It breaks down from the bigger plastics (e.g. water bottles, plastic bags, cigarette lighters, and additional trash) that have already made their way into the water. They can also find their way into oceans through drains; it is not uncommon for micro particles to be in face washes, scrubs, or industrial cleaning products that get washed down into waterways (GreenFacts, 2017). Over time, they continue to break down into smaller particles. This process has enormous potential for implications in marine life. We’ve all seen images of seals or sea turtles with entangled fins and flippers because they’ve gotten caught in plastic soda rings, posing risks of drowning and death to these animals. These microscopic elements are also ingested by other animals like whales who filter feed, birds that feed off of smaller creatures in the water and even microscopic organisms like zooplankton. While we might think that the larger plastics are the ones playing a bigger danger to marine life, even the tiny particles that result as the break down of those bigger effect the structure of various sea life. We’re becoming increasingly familiar with the dangers of ingesting fish with high levels of mercury in them; who is to say that traces of microplastics in fish will not cause further health risks to humans? Furthermore, microplastics can seep into inland waters, soils, our indoor and outdoor air, and the water we drink, not just our oceans. PCBs (polychlorinated biphenyls, PAHs (polycyclic aromatic hydrocarbons), flame retardants, hormone disrupters, and pesticides are only some of the known ingredients used to comprise plastics (Owlcation, 2017). As plastics break down, these chemicals are leached into the surrounding environment. Although we know that these elements have the ability to disrupt the balance of certain ecosystems and organisms, scientists are not currently too familiar with the absolute impacts it plays in regard to the health of humans. We can be certain that traces of these substances are indeed harmful in certain concentrations, but some argue that until we are aware of the undeniable effects they play in the lifespan of a human, we cannot make inferences. I see the reasoning behind this logic to be quite problematic because we can make connections between destructive effects of these compounds in aquatic and terrestrial life, so why exclude ourselves from that same toxic equation? While the effects to humans are still being investigated, it is no secret that the presence of plastics affect the surface of the planet. Plastics that are left behind on the surface of our planet also have effects. Plastics that sit in heat give off UV radiation, which warms the surrounding area (Weisman, 2007). At first look this may seem like it has very little effect, however; when one takes into account all the plastics that are used and left behind, the effect becomes greater. This heat stays trapped in our atmosphere, increasing temperatures. Already the biggest issue that many scientists and society are facing is climate change. Increase in temperatures has many effects varying from decline in crop production, to our wildlife. “The most direct emissions come from the burning of fossil fuels for energy…plastics are made from fossil fuels like oil and natural gas, which release toxic emissions when extracted from the earth” (Glazner, 2017). Now that we are more familiar with the risks and hazards associated with the ever increasing presence of plastics in our environment and bodies, we can shift towards the discussion regarding the environmental ethics surrounding the production, consumption, and waste handling of plastic. One of the biggest issues that human kind faces is its tendency to continuously consume and destroy, rather than return and sustain. A part of environmental ethics is having a relationship and playing a role with the environment; when we constantly take from our natural resources to produce things that don’t even have the ability to decay, we are contributing to the lack of care for the earth. We are not being responsible global citizens when we are aware of the implications a particular element brings to our environment, wildlife, and even us and still continue to support its production instead of look towards new and innovative ways of replacing the object or finding more sustainable ways to use it. The public needs to be educated about the ways that these substances are affecting the balances of our ecosystems and the organisms that inhabit them. Being that we are largely an anthropocentric society, it might be difficult to incorporate environmental ethics into our traditional ways of thinking. Additionally, since we are living in a consumer driven world, we are largely susceptible to falling into businesses agendas, constantly striving to sell products, using cheap materials (like plastic) to appeal to the consumer’s pocketbook. We need to keep in mind that dominant corporations will always continue to produce what is most economical for them, regardless of the consequences it has for the environment or those who labor hard hours to produce our commodities; their goal is to remain wealthy and in control. While we do need supplies and various other materials, we must keep in mind that the people have the influence to demand structural changes both in policy and corporate approaches and also have the choice to make informed purchases and conscious decisions in regards to what we buy, how we use it, and how we dispose of it. Furthermore, we need to take into consideration the legacy we’re leaving behind as modern humans. What kind of conditions are we leaving our planet in to be inherited by our children and generations of theirs? If left untreated or cared for, we will continue to see the degradation of our diverse marine species, land species, potentially even our own well-being. Additionally, we are creating an atmosphere that embodies allowing the further pollution of our world through continued use and irresponsible discarding of what plastics we already have. While society focuses on what we can make and how it can “improve” our lives, we need to shift the focus on how we can improve our already existing foundations of development and transition into a more viable way of consuming and existing. While we do have problems, we also have solutions. We are caught in a web of being part of a complex society that strives off of producing commodities for the public, maintaining power structures based on profit and wealth, and maintaining traditional uses of the things we have and have been using for so long. Moreover, we are part of a world that values human convenience and welfare largely over other things, especially when related to the environment or animals. However, though we are shaped to value or care about certain things more so than others, we can re-program our minds to be collectively responsible and caring for the impacts we have on our world. We can further educate ourselves and those around us to become more involved in the dialogue surrounding eco-friendliness as well as make more progressive lifestyle choices. So now that we know the dangers related to the presence of plastics and microplastics in our environment, what are the solutions and what word can we help spread? We can start by informing our audience and calling to the attention of others a noteworthy piece of information: “Americans are currently generating more plastic trash than ever…littering our cities, oceans, and waterways, and contributing to health problems [potentially] in humans and animals” (Ecology Center, 2017). This effects us in more ways than we are probably conscious of. Loss of diverse species and healthy soil, water, and air quality will eventually directly affect us all. Why should we care? Plastics in all stages of its existence present a threat not only to the well being of our environment and animals. There is a very real possibility of serious health implications that can give rise in humans due to the direct exposure of some of these toxic substances. “There is a large body of scientific evidence demonstrating the harmful effects of BPA in laboratory and animal studies…there is a very strong suspicion in the scientific community that this chemical has harmful effects on humans” (Science Daily, 2008). Although we are currently still in the process of investigating the absolute consequences of the chemicals in plastics to human health, there are strong correlations to be made about its impacts on the earth and other living organisms. We wouldn’t want to expose our children or pets to chemicals like BPA that are released from certain plastics when simply washed with hot water. What are the alternatives to using plastics? Among the most resourceful is source reduction, in other words reducing the use of plastic. Even more specifically, reducing plastic packaging. Not only will this decrease the amounts of large plastic wastes, it decreases the amounts of microplastics in our water and air, and helps keep emissions and energy consumptions at a new low. How can we do this? Retailers and consumers have the option of purchasing products that use little to no packaging. Even when it is necessary, there are selections that include the use of recycled materials like glass, paper, or aluminum (Ecology Center, 2017). As previously mentioned, we have the influence as consumers to demand changes in products and their production. This means that our purchasing power interprets the ways in which companies and manufacturers continue to make their products. Another effective way in which we can reduce our plastic footprint is by reusing our materials. A little creativity can take us a long way; using glass mason jars for drinking variety of drinks is much more sustainable than drinking coffee out of a cardboard cup, water out of a bottle, juice from a pouch, or milk from a separate carton. While common misconception tells us that all of those resources are recyclable, we should take into consideration the materials and energy used to ship, manufacture, transport and sell every individual element we separately used. While education and the passing on of important information to friends, family, and the public is critical to helping spread the word, getting involved on a deeper level is also incredibly beneficial. Consider volunteering at a recycling center, bringing others to visit a landfill and personally witnessing the large impact plastic presents, or even proposing concerns and solutions to companies, even city council officials to bring awareness in your own community. With the combined efforts of all of us as concerned, global citizens we can strive towards the shift from harmful components to more sustainable and eco, as well as health friendly options. References Crampton, L. (2017, September 12). Microplastics in the Environment and in the Human Body. Retrieved December 11, 2017, from https://owlcation.com/stem/Microplastics-in-the-Human-Body-and-Potential-Health-Effects Marine Litter. (n.d.). Retrieved December11, 2017, from https://www.greenfacts.org/en/marine- litter/1-2/3-micro-plastics.htm Plastic Bottles Release Potentially Harmful Chemicals (Bisphenol A) After Contact With Hot Liquids. (n.d.). Retrieved December 11, 2017, from https://www.sciencedaily.com/releases/2008/01/080130092108.htm Straub, S., Hirsch, P. E., Burkhardt-Holm, P., Kole, P. J., Frank G. A. J. Van Belleghem, & Ragas, A. M. (2017). International Journal of Environmental Research and Public Health. Retrieved December 11, from http://www.mdpi.com/journal/ijerph/special_issues/microplastics The History and Future of Plastics. (2016, December 20). Retrieved December 11,2017, from https://www.chemheritage.org/the-history-and-future-of-plastics THE PROBLEM WITH PLASTICS. (n.d.). Retrieved December 11, 2017, from https://ecologycenter.org/plastics/ Introduction: As you stand in the grocery store, list in hand and stomach full as to not over shop, it comes time to pick a cereal. Under the fluorescent lights, options are jumping out at you from the shelf. The small cardboard boxes bombard your senses with colorful packaging and use of bold font, each box trying to sell you on how they have mastered the mixture of nutrition and taste, promising the best start to your drab Wednesday morning. Since you are a health conscious adult now, you wander past the Lucky Charms and Captain Crunch to the more balanced and “zen” looking cereals. Here, the Special K and Quaker Oatmeals battle to be chosen, with offers of real fruit, twice the amount of daily fiber, and of course, chunks of chocolate. Almost all brands provide the consumer with a chocolate option. We see this not only in cereals, but in most products on the market. With chocolate having a diverse profile of flavors and health benefits, it can be paired with almost everything from espresso to fruit, ice cream to wine, breakfast to dinner, chilis to beer. Not only does this item come in every shade from dark to white, it covers every flavor palate from bitter to savory to sweet. It is rare to meet someone nowadays that does not enjoy some form of chocolate. Often times, our response to hearing someone say that they do not like chocolate, is to instantly classify them as a psychopath. It is a staple in holiday celebrations throughout the year, a symbol of comfort and familiarity. As a society, we love chocolate so much that we have made it into scents and colors. For example, the Chocolate Labrador is one of three American Kennel Club certified and officially recognized breed of Labrador. Neither of the other two breeds are named after a delicious, nutritious treat. We love chocolate so much, we even sexualize it. With all of this hullabaloo over our beloved “feel-good” chocolate, it is almost impossible to imagine a world without it. However, studies are being released and word is spreading that chocolate may be fading out of the market, if not disappearing completely during our lifetimes. How the jolly, rosy cheeked fellow at the chocolate shop can run out of his mocha gold confection simply does not compute in our minds. Still, the reality is that we are running out. Not only of chocolate, but the chocolate farmer as well.
A Short History of Chocolate: It is difficult to imagine a life without chocolate. We have grown up on it. In fact, studies indicate that chocolate was a common frothy drink for the Aztec and Mayan civilizations (Yoder). Theobroma Cacao, or cacao beans are native to Central and South America. It seems these beans have always been held in high esteem. In a recovered journal entry from Christopher Columbus’s son, Ferdinand, is the witnessing of the concern Native Americans took with the business of their precious cacao beans. Ferdinand states that they took great caution in making sure that all of the harvested beans were accounted for, even stopping to pick up the ones that fell. Cacao beans were used as the local currency of Native Americans for a time. There are two different ways to roast beans. The difference in ‘cacao’ and ‘cocoa’ is essentially the product after the beans are roasted. Today, these casually commodified beans endure quite the journey to become the sweet, rich bars, bites, powders, and liquids we see in stores. The Forastero bean, which is the bean that makes up about 90% of the chocolate produced today, comes from multiple farms in Africa, the Caribbean, South East Asia, and the islands of Samoa and New Guinea. It begins as a brightly colored yellow-green fruit, hanging from the jungles trees in pods. From there, it is plucked, shucked, dried and shipped to factories. Chocolatiers then roast, chonce, temper, and packing into the familiar shapes we see in vending machines, convenience stores and pretty much everywhere else (Spadaccini). Political Economy: Depending on who you ask, we either are going to lose chocolate completely or see no change at all in its production. This argument boils down to science and global warming. Lots of journalists are passing around the story that the warmer climate will not bother cocoa trees, because the trees will be able to adapt to warmer climates with little deficit as they rise over the next 40 years. If they cannot keep up, scientists will genetically modify them to be able to (Yoder). What scientists on both sides of the spectrum agree on is that we will see a deficit in cocoa on the market, due to the cocoa growing hot-spot becoming too hot temperature wise. The recovery strategies are where these scientists differ greatly. All theorising aside, what is happening with these trees now is that they are struggling to stay alive. Not only is a rise in climate temperature causing their fruit to fail, but the cocoa farmer himself is facing challenges for survival. It is no secret that cocoa farmers live in extreme poverty. This means more than miraculously supporting a family on an unlivable wage. Pesticides and and chemicals are becoming a crucial part of successful cocoa tree growth and production. On an average wage of between 50 cents to $1.25 a day for a man, a family and other workers to live off of, a farmer simply cannot afford to keep up with the chemical aid these trees are demanding. Despite these hardships, consumers are still receiving 70% of their beans from the Ivory Coast and Ghana (Barclay). Lots of these farmers are unorganized, and quite out of tune with the market worldwide. This means they are unaware of how valuable their harvest is, and how they powerful they are in the eyes of market demand. They are also unaware of how much they are receiving in relation to the final market value of the finished product that began with their hard and unfair labor (Inakota). When asked what the dried beans will be used for, a farmer gave a reply that translated to “Frankly, I do not know what one makes from cocoa beans. I am just trying to make a living from growing cocoa beans” (Barclay). While the global retail sales value jumped from 20 billion to 100 billion in two years, farmers as a whole continued to only see about 6% of the profits per metric ton of cocoa. At best, less than a dollar a day is not enough. Even though farmers are able to control the income and supply of beans by storing them, they lack access to knowledge of market information outside of the intermediaries, and are often in need of fast cash. This means, they are under pressure to produce more without a price increase. Many farms incorporate child labor as means to increase production. While children working with their parents is not an uncommon practice, it becomes an issue when the work is strenuous and unrelenting. This unfair practice is driving future cocoa farmers away from the profession, because it is really hard work in a seemingly dwindling economy. Others farms affected by diseased trees often end up clearing out new spaces to grow trees and expand on their own farms. This act of expansion is destroying habitats for other animals, and members of the jungle. Disease accounts for the incorrect growing of roughly 40% of beans per crop. That is 40% of valuable product that these farmers are losing per crop of cocoa bean (Inakota). This loss combined with the ever pressing threat of running out of money completely is the driving force behind the lack of sustainability in cocoa crops. It is no wonder farmers are desperately thrashing through new land in an attempt to find a sustainable environment for a profitable crop. Environmental Ethics: Coffee has many cousins. Take for example coffee, tea, sugar and marijuana. With how popular chocolate is among all generations, it is not surprising to find that it falls into a middle ground between being more than just a food but not quite a drug. Its reaction with receptors in the brain creates a ‘feel-good’ effect, and create psychoses that are associated with the craving of chocolate. Since cocoa is made up of 300 various known chemicals, scientists have understandable had trouble discovering which ones come together to create this reaction (Spadaccini). Not only that, but the effects cocoa has on one’s health is something to celebrate. Cocoa has properties that aid in the battle against depression and anxiety, cavities, blood clots and heart disease. Dark chocolate 70% or above in particular contains the highest concentration of flavanols, which aid in lowering blood pressure and even reducing the risk of diabetes. All in moderation of course (Fisher). That being said, it is not unusual to see a rise in consumers pursuing more organic, concentrated cocoa in the form of dark chocolate. Nowadays, consumers are also searching for products that meet certain sustainable or moral standards. Labels are a huge opportunity for marketers, because language can be strategically used to give a false impression of what a product really is. Fair trade chocolate, vegan chocolate, and sustainable chocolate are hot on the market right now. Scharffen Berger, a chocolate shop out of San Francisco, is one of the last shops in 60 years to open that makes their chocolate, starting from the actual bean to the finished product (Spadaccini). Trader Joe’s and whole foods are examples of places that make buying raw or vegan chocolate easy and accessible. Organizations, such as the Fair Trade Organization, leave their mark on products that have been integrated into their movement. By doing this, this organization are ensuring that the environment and the workers on the producing end of chocolate are being empowered and achieving sustainability. This organization is also providing the consumer with a happy medium, where they can consume true organic products and support fair trade all over the world (Rice). Thanks to the support of organizations like this one, making sure that small cocoa farms are sustainable and supported, we may be able to retain our beloved chocolate. Conclusion: Chocolate is everywhere. On a daily basis, we interact with chocolate on one platform or the other. It is easy to take this casual taste-bud booster for granted, especially when you do not have to think about where it comes from. It everywhere. Chocolate is there for you when you are sad, happy, hungry, sick, chocolate has your back. The earth is filled with super foods and delicious supplements out to tickle our taste buds. Just as our personal health benefits from dark chocolate, so does our collective health rely on the actions of everyone in it. Within our love for chocolate has to be the love for other people, enough to extend a hand to the humans who are suffering for our decadent treats. The most important thing a chocolate lover can do is become aware of where their chocolate is coming from. Being proactive in protecting something so widely loved and accepted is the key to keeping it around. After all, life is better when you have chocolate!
![]() Introduction Maize or corn is a versatile food. Each culture or region has a use for corn. The use of corn is endless from food, adventure (corn mazes), and the livestock industry. In urban communities like in Los Angeles corn is a street food and comfort food that many locals enjoy. Corn originated from Mexico and as of today is being consumed and produced in many countries. According to United Nation data about 384 million bushels of corn was produced in the US in 2016 and this number keeps on increasing as the industries keep using corn. In corn becoming such a wide use in the U.S. and other countries it is essential for us to be aware of how corn has become industrialized and how it has affected people and earth. In corn being on of the most grown crop in the agriculture business it has impacted small farmers, farm workers, and low-income communities. This one crop along with many other crops has led to communities to suffer the consequences of turning agriculture into a monoculture. A Short History Corn was domesticated from a plant called teosinte around 10,000 years in Mexico. Corn is a significant part in many cultures. In Maya and Aztec culture corn was more than a staple food, it was part of their religion (Ortiz and Caistor 2). They had gods of corn and had rituals to honor the corn gods. In other indigenous groups the species and use of corn changed and these practices are still used in Sothern America countries. During colonization Indigenous groups introduced corn to European colonizers from there is spread to other region of the world(The Editors of Encyclopaedia). In the U.S. corn is one of the most abundant crops. Compared to the use from Indigenous groups the U.S. used corn for human consumption, livestock, and fuel. Corn is usually correlated with corn on the cob or popcorn. Corn is consumed daily because it used as an additive in processed foods to make beverages or food more flavorful. This type of corn is called field corn and is not only is it processed for food production, but also used to feed livestock.( A Brief History of Corn.”). Not only is corn excessively used for livestock but also to produce fuel ethanol. Between 2001- 2010 corn production increased because all gasoline started to contain 10% ethanol (Alternative Fuels Data Center). That is why the U.S. production and consumption of corn is vastly greater than other countries. Federal laws such as Federal Agriculture Improvement and Reform Act of 1996 allow for farmers to grow their crops with freedom, that is famers are able to use advanced technology and equipment’s to allow for the efficient production of as much corn production as possible (“Feedgrains Sector at a Glance.” ) Farmers use GMOs, pesticide, and herbicide to protect the growth corn from certain diseases or bugs. Irrigation systems, machines, and human labor is used to be able to go from planting to packaging corn in the most effective way possible. The production of corn has been increasing yearly as the livestock industry has been expanding, and in order to keep up small farm owners must need to compete with these large corporations. It is estimated that the U.S. corn farmers grow about 17 billion bushels of corn on 83 million acres by 2020( Corn and Livestock). Political Ecology This demand for producing corn is not only due the fact that corn is used in a variety of ways, federal policies encourage farmers to transition into expanding the growth of corn. During the 70s the Unites States has created similar bills as the Farm bill which focus on people to have access to food at a low cost (Bosso22). To support this bill, there are federal polices that provide resources for famers to increase their acre production. These resources are quite abundant from; receiving contract payments, marketing loans, disaster aid, conservation payments, and crop insurance (“Feedgrains Sector at a Glance.” ) These aids can be used by local farmers that are trying to compete in this industry. Local farmers must be able to purchase high-technology to produce high amounts of product such as farm corporations do. The technology being used is; GPS-guided seeders, computer application of fertilizer, modified seed animal, and chemicals for herbicides, pesticides, and fungicides. Due to this the agriculture business has been monopolized, there are a few corporations that control many farms (Corporate Control in Agriculture). Small farmers would need to transition into monocropping to be able to continue farming. Not only must small workers be able to increase their acres of corn being grown but also selling their product in the market is difficult. One of the issues in the selling on produce to make more profit is that corn is used as an ingredient for other products. Corn is converted to cornstarch, cornmeal, and high-fructose corn syrup that are common ingredients found in processed food or drinks. These big companies have the resources to sell their product to food corporations compared to those of small-scale farmers that do not. Small farmers must also compete with the global market, so in these small-scale farmers producing less amount of corn bushels would not help (Bosso19-21). One of the ways in which famers can make profit in this industry is by hiring immigrant workers. The first immigrant farmworkers were Chinese, then Japanese, and lastly Mexicans and Filipinos. Mexican farmers are the ones till this day that make up the majority of the farm workers. ( Sbicca 37-38).This is due to primarily to the Bracero program that was created during WWII. This agreement between the U.S. and Mexico allowed for Mexicans to have freeing housing and enough money to provide for family and the U.S. farmers increased their profits in paying these workers the minimum. This soon became an issue as American citizens believed the people in the Bracero program would steal their jobs, when in fact the program set regulations for this not to happen. However, the famers ignored this and from the inhumane treatment of farmer works and immigrant workers starte(“About”). Environmental Justice One of the health issues farm works have been working on is exposure to pesticides and other chemicals. During the Bracero program these workers were exposed to a chemical called DDT that was used to kill of the insects in the crops(Sbicca,34). The co-founders of United Farm Workers (UFW) union, César Chávez and Dolores Huerta fought for farmworkers rights and one of the issues was the workers being sprayed with chemicals as they were working on the fields (Beasts of Burden >> 61). Now the Environmental Protection Agency (EPA) is apple to control the use of pesticide through the Worker Protection Standard (WPS)(U.S. department of Labor). Anther health concern is being constantly exposed to the sun that cause heat-related issues. Farm workers have limited resources that makes it difficult to be treated. Most are immigrant workers and do not have enough money for medical expenses. In being low-income this limits their resources to care of their health. Part of their health is having access to food. Farm workers and other groups have limited access to healthy food. In low-income areas in urban communities’ people do not have resources or access to health food. Most of these cities are labeled as food deserts in how fresh local food is not easily available. The food that is available in these communities are mostly fast food places or convince stores that primarily sell processed food or junk food that leads to health issues such as obesity. In urban areas that do have access to local fresh food are mostly beneficial to high-income or white community members. To accessibly to obtain fresh produce is mostly related to a person’s class, gender, and social stance such as how in Oakland when white people moved into suburban areas this caused a stop the devolvement of food retails in areas where mostly black or African American lived (Sbicca 29). In addition, to low-income communities having limited resources to healthy food they are also prone to exposure of harmful chemicals due to them living near factories. Although, industrialization of the agriculture business had led to it impacting people’s ability to obtain healthy food because of corn and other crops being exported to other countries and being used in other ways instead of consumption for humans. As well as the inequality of food in low-income versus high-income communities’ people in urban areas are getting involved in the food movement to learn about food injustice and how alternative farming is beneficial for them. During Food Day 2015 the Los Angeles Food Policy Council and the Equity Summit discussed about how to work on food equity and New York also held a conference called, “Putting MOVE in the Movement!”, that discussed what the food movement was about and other important topics that spread awareness on food injustice. The movement of alternative farming has occurred since the 60s when people wanted to eat non-processed organic food. This issues with this movement is in did not take into accounts other movement or take into account how classism, racism, and social status also play an important role in gifting for food justice and sustainable farming (Sbicca 30-32). Currently permaculture and urban gardening as been increasing and motiving people to want to learn more about alternative ways to purchase food to not partake in the agriculture industry. What is great about these alternatives is that people get to learn how to grow their own food. There is not need to buy expensive or difficult to obtain fresh food because it is growing in a person backyard. Urban gardening and permaculture take effort to learn and be able to use the least number of products because it is all about being able to reuse or reduce the use of materials. People are fighting back and not letting the corporations take away their food rights and produce more harmful chemicals to Earth. Conclusion As people are becoming more aware of the how the agriculture business is continuing to shift into monoculture, alternative farming practices are becoming more known and are being applied to people’s daily life. Alternative farming practices unlike the agriculture business focus on understand how to incorporate practical and environmental conscious methods of producing fresh healthy food. Not only are sustainable agriculture practices beneficial to communities because it allows them to have easier access to healthy food instead of processed foods. It also no longer provides profit to the agriculture corporations that provide limited right to the farm worker and increase waste that harm the environment. This shift is going from anthropocentric to eccentric in how the people are trying to create a relationship with nature. In becoming aware of alternative farming methods that allow for ecosystem to interconnect instead of human being the center just like how the agriculture has led to profit being important (Robbins et al. 78). Works Cited - “A Brief History of Corn.” Https://Naitc-Api.usu.edu/Media/Uploads/2016/03/30/Brief_History_Corn.Pdf, Environmental Impacts of Corn and Corn Products. - “Feedgrains Sector at a Glance.” USDA ERS - Food Environment Atlas, www.ers.usda.gov/topics/crops/corn-and-other-feedgrains/feedgrains-sector-at-a-glance/. - “Corn and Livestock .” National Corn Growers Association . - “Corporate Control of Agriculture – Farm Aid.” Farm Aid, 10 May 2016, www.farmaid.org/issues/corporate-power/corporate-power-in-ag. - “UNITED STATES DEPARTMENT OF LABOR.” Occupational Safety and Health Administration, www.osha.gov/dsg/topics/agriculturaloperations/hazards_controls.html. - Alternative Fuels Data Center , U.S. Department of Energy's Vehicle Technologies Office, afdc.energy.gov/data/. - The Editors of Encyclopaedia. “Corn.” Encyclopædia Britannica, Encyclopædia Britannica, Inc., 7 Dec. 2018, www.britannica.com/plant/corn-plant. - “UNdata | Record View | Maize.” United Nations, United Nations, data.un.org/Data.aspx?d=FAO&f=itemCode:56. -“Evolution of Corn.” Nutrition & the Epigenome, University of Utah, learn.genetics.utah.edu/content/selection/corn/. - “About.” Bracero History Archive , braceroarchive.org/about Bender, Steven W. “Beasts of Burden: Farmworkers in the U.S. Field of Dreams.” Mea Culpa: Lessons on Law and Regret from U.S. History, NYU Press, New York; London, 2015, pp. 59–75. JSTOR, www.jstor.org/stable/j.ctt1287jdd.8. Bosso, Christopher. “The Food System: Or, Why Governments Don’t Leave Agriculture to the Marketplace.” Framing the Farm Bill: Interests, Ideology, and Agricultural Act of 2014, University Press of Kansas, 2017, pp. 14–26. JSTOR, www.jstor.org/stable/j.ctt1kzcdb6.5. ORTIZ, ELISABETH LAMBERT, and Nick Caistor. “CORN.” The Flavour of Latin America: Recipes and Stories, Latin American Bureau, London, 1998, pp. 1–16. JSTOR, www.jstor.org/stable/j.ctt1hj56t4.3. Robbins, Paul, et al. Environment and Society: a Critical Introduction. Wiley-Blackwell, 2014. Sbicca, Joshua. “Inequality and Resistance: The Legacy of Food and Justice Movements.” Food Justice Now!: Deepening the Roots of Social Struggle, University of Minnesota Press, Minneapolis; London, 2018, pp. 23–48. JSTOR, www.jstor.org/stable/10.5749/j.ctv3dnnrt.4. ![]() Introduction: “What really amazes me about the world is that we have the infinite collective of human information in our pockets, and yet for some reason people are still wrong all the time.” This is something that Bill Burr has stated in his act before he goes on his rant about the woes of technological dependence. Although this quote is obviously a joke, it hits me hard for some reason. What it hits me with is the question that I am sure many people have: Are cell phones really as good for us as we think? Are we just becoming socially disconnected, overly technologically dependent, screen junkies? Are we becoming tethered to our mobile devices because we are addicted to that little hit of serotonin we get when we refresh our twitter feed? How does our phone dependence effect the world around us? Where do our phones come from, and what is the real price our world pays for their creation? These are all aspects that need to be explored, in order to see the full scope of an object of concern. The risks and hazards, as well as the political economy in making phones. The risks and hazards being to people, as well as the environment. The political economy being everything it takes to create the devices that run our lives from our pockets. We must also explore the history of cell phones, starting with their introduction into the market, as well as their development from the “brick phones” to today's smartphones. By doing this analysis the hope is to gain a better understanding about mobile phones, as well as what it takes to make them, as well as the risks involved in them. History: The idea behind a portable phone has been around for a century, with Finnish inventor Eric Tigerstedt creating a patent for a “pocket-size folding telephone with a very thin carbon microphone". The first truly handheld telephone was debuted in 1973 by employees of Motorola, and weighed 4 pounds making it leviathan in size when compared to modern day cell phones. This was the start of the first generation of cellular phones that worked off the “1g” network, with each successive generation the number increases as the technology increases. We are currently on the 4g generation, and the next generation of technology to come will be dubbed the “5g”. Having developed beyond the old style “brick” phones, the generation that dominated the 2000’s were a series of what we now call “dumb” phones that ran on 3g. After the release of the first iPhone in 2008, and increasing pressure of bandwidth use due to streaming apps, 4g was introduced to the market. With the addition of 4g a whole slew of new “smart” phones flooded the market, with most every major tech firm testing the water to see if they could strike big in the burgeoning market. Cell phones work by communicating with cellular towers, each tower supporting a specific area. Cell phones also work off of other networks such as wi-fi. The idea behind the current generation of 4g phones, is that they are essentially modeled off of computers. With a CPU running the phone, a display to show information to the user, a battery to keep the phone running while moving around, a series of speakers to project sounds, and SIM card provided by the carrier in order to allow the phone to access the network’s cell towers. Most phones work off the software Android Operating Platform, with a nice chunk of the population of phones working off Apple’s operating platform iOS. These cell phones have become a very common part of everyday life in the developed world, and even outside of it. Though whether this is a good thing is still up in the air. Risks and Hazards The risks and hazards of the cell phone come in two forms, the threat to people and the threat to the environment. Being a human, I must admit a human-centric bias so that is where I will start my analysis. The threat of phones to people come in several forms; including mental health, physical health, and the risk the the environment on where these products end up.There has been a specific threat to those of my generation ever since we first received our licenses, being distracted by our phones. The Department of Transportation states that over 420,000 injuries every year in the United States could be attributed to technology based distractions. This makes distracted driving statistically a bigger threat to public safety than driving while under the influence. The threat of phones to the physical well being of the masses does not just end at the car, distracted walking has also taken an uptick. WIth the introduction of mobile games like the 2016 hit “Pokemon Go” people walked onto private property, into traffic, and even famously into an open manhole. The physical health of people is not the only concern, but also the mental health. Many health advisors warn of possible side effects of over use of cell phones. “Problematic mobile phone use (PMPU) is considered as a behavioral addiction that shares many features with more established drug addictions.” Cell phones can be as addicting to some as drugs, needing that constant fix of instant gratification to function effectively. Another example of the impact phones have on mental health comes from a personal experience. Seeing people online post about how they are progressing through life can make you feel inferior, or like you are not on track. In reality these people are just posting a part of their lives, hiding all their struggles and mishaps behind the veneer of graduation or vacations. Along with the risks to humans there is also the risk to the environment posed by the fact that we do not have an effective way of disposing of these phones. Electronic waste, or E-waste, is often toxic, “...e-waste often contain toxic materials such as lead, mercury, PCB’s, asbestos, and CFCs.” So these toxic items are sent away from those who use them, mainly the United States, and are sent to developing nations. These developing nations normally have less stringent environmental codes, so the e-waste is dumped there. There it poses a health threat to those who live there, as well as hazard to the environment. E-waste can poison habitats, as well as make areas toxic due to the chemicals present in e-waste. Cell phones are becoming increasingly a part of this e-waste problem. The more people that own cell phones, the more possibility there is of e-waste being produced. And cell phones have never been more popular, thus more e-waste must be being produced. Political Economy To create phones we need three important factors; materials, people, and land. Land is used for two reasons; either for building factories or for mining. The mining is where we get the materials, with many of the materials being rare earth elements. So any country that holds a large amount of rare earth elements will have a marked increase in political power, for example China. According to the New York times, “Chinese companies accounted for more than four-fifths of rare earth element production.” This level of control affords China power in several ways, both in simple trade power, allowing them to come out ahead in almost any major trade war. Also in the fact no one wants to anger the power that controls four fifths of the rare earth elements on earth. This contributes as to why China is allowed to get away with human rights violations like what we see happening to the Weiger population in China. No one wants to anger China, so China is allowed to put people in “reeducation” camps for following their religion. People also play a factor in the political economy, with the workers being the ones who suffer greatly for the worlds phone needs. Although there is an influx of jobs, these jobs are often low paying and hazardous to people's health.They also have an effect on people’s mental health, with so many people attempting suicide at Apple factories they had to install nets to keep people from jumping off of higher floors. These jobs keep people poor, because capitalism cannot afford to pay them a livable wage if it affects profit margins. Conclusion Although cell phones offer us a myriad of benefits, we must also be aware of their hazards. We must take time to realize their effect on people, as well as the wider world around us. I personally have done “tech cleanses” periods of time that I do not use things like cell phones. I have to admit my general anxiety in life seemed to decrease, and it also allowed me the time to reflect on how much we have become reliant on our phones to function. And at the rate we are depleting our natural resources, we must be prepared for the possibility that one day we may not have cell phones at all. ![]() Taylor Conrad GEOG 300 12/9/18 Laptop Computers Laptops have become an essential tool for all types of people, from students to CEOs of companies. Having access to the internet and a keyboard in a compact and travel friendly format is extremely versatile in our fast paced society. New and improved laptop computers are continuously being released making them more user friendly and advanced, but also making the older models disposable and software updates driving them into obsolescence. This becomes an issue because many consumers are unaware of the consequences of e-waste and how to properly dispose of old electronics. Laptops have amazing technological uses but are harmful to the environment due to overconsumption and excessive e-waste from consumers. Laptops didn't always look so sleek and definitely were not as compact and thin as they are today. The first laptop was a creation used for space travel. It was used by NASA for their space shuttle program. The laptops first seen by the general public weighed over twenty pounds and cost quite a hefty price. From 1981 through the present, laptops have been produced and redesigned to get us where we are today. The first laptop computer was called the Osborne 1, “It was a portable computer that weighed 24 pounds and cost $1795 (Bellis, 2018). At the time the Osborne 1 was cutting edge, but laptop technology quickly advanced and became more sophisticated and throughout the years. The leaders in the laptop market included IBM, Microsoft, Apple Computers and RadioShack. Each company made their own advancements and continue to mass produce new updated models every year. Advancements and improvements included bigger and better batteries, new displays, and increased storage. As laptops became more mainstream, the high prices also came down, allowing for more people to begin using them. Laptops, among other electronic devices, are in high demand in today’s society. The tech industry has exploded in the past decade, allowing for consumers to feel a need to keep up with the new products. Each time their is a new Apple release, consumers are desperate to get their hands on it, even though most likely, they have a working one that is just the previous model. This hype that is created over new tech products allows companies to pump out updates on products like laptops, knowing their customers will want it and pay for it. According to the Pew Research Center, about 75% of Americans own a laptop. We now live in a society that relies heavily on technology and that creates the “need” for the newest and smartest tech products. Technology has made humans capable of so much and has become a part of how we function, “extending human capability, is incorporated into the self and inevitably comes to constitute one’s sense of who one is.” (Buchanan-Oliver et al., 2011). Laptops often contain a persons whole life in one place, where they can communicate with people all around the world, work, read, write, etc. When something becomes so intertwined with how you function and all aspects of your life, it becomes “essential”. There are a lot of people constantly on their electronic device for their career and they are often the main consumers of the constant new technology. Most Americans also use their laptops for streaming tv, music, games, etc beyond using it for more academic/professional uses. This is a big part of the consumerism we see around laptops, people are always looking for forms of entertainment and laptops are just one of their many options to consume media through. Electronic device consumption is one example of the ways in which capitalism is ruling our country, people will keep buying the newest things and won’t think twice about it. With the overconsumption of electronics such as laptops, there is a huge problem with an excess in e-waste and improper disposal of tech products. E-waste is a term used to describe electronic products that no longer have a use. Most e-waste contains hazardous materials that need to be disposed of properly. “20 to 50 million metric tons of e-waste are disposed worldwide every year” (DoSomething.org, 2015). Most Americans are unaware of how recycling e-waste works, and they may just dump their electronics somewhere unsafe. Even when e-waste is recycled, it is usually shipped to a developing country to be destroyed, burned or resold. Laptops and other electronic devices contain both hazardous metals such as lead, mercury or cadmium and valuable metals such as gold or silver. Shipping our unwanted tech products elsewhere allows Americans to be blind to the environmental impacts e-waste creates. According to the Population Reference Bureau, “primary and secondary exposure to toxic metals, such as lead, results mainly from open-air burning used to retrieve valuable components such as gold. Combustion from burning e-waste creates fine particulate matter, which is linked to pulmonary and cardiovascular disease” (Mcallister, 2013). Burning e-waste can expose workers to respiratory issues and the wind will likely carry these toxic fumes throughout the surrounding area. Most laptops have flame retardant materials throughout the device which can easily leech due to a lack of chemical bonding, or will be toxic when burnt. If e-waste is not properly recycled, it will end up in landfills, which also has human and environmental health risks. Leeching is a very big problem associated with e-waste in landfills. Chemicals leach out of the electronics and eventually into the surrounding soils. Hazardous chemicals such as lead, mercury and a mix of other metals can be lethal for aquatic organisms. Most American’s don’t perceive the risk of their e-waste on the environment due to their lack of knowledge on both the proper disposal of electronics and also the external cost of their tech consumption. “Recycling 1 million laptops saves the energy equivalent of the electricity used by 3,657 U.S. homes in a year.” (DoSomething.org, 2015). Recycling e-waste isn’t a perfect solution but it’s an easy way to make sure your electronics don’t end up in a landfill. The external cost of laptops is much higher than the price you pay for one. External cost includes the pollution from production and transportation, labor of workers assembling laptop, garbage produced after packaging is removed, electricity used for charging, and the extensive pollution that comes with the leftover e-waste. This is all part of the risk perception people are not aware of and should consider before purchasing the newest laptop release. Consumers should consider external costs of everything they purchase specifically when purchasing electronics due to the lack of safe disposal methods. Even if e-waste is not a hazard to you, it will be for someone else in a developing country. That also goes for any purchase you make and the external cost that comes with it. People with enough money and/or privilege to buy a laptop are not going to be affected by the damage that will come from the external cost of their purchase but it’s extremely important to consider when buying any electronic device. Tech companies need to acknowledge this problem and take responsibility for researching more sustainable and safer alternatives for the hazard metals in laptops and other electronics. In conclusion, laptops are a popular electronic device used by millions of people everywhere. When laptops and other tech products are no longer desirable or functioning, they become environmental hazards. The combination of consumerism and a lack of safe/sustainable e-waste recycling, creates hazards for developing countries and the areas surrounding contaminated landfills. Tech companies must work to find safer alternatives for toxic metals and consumers need to be aware of the external costs associated with their purchases. Laptops are a valuable and convenient tool but become easily disposable when something newer is available. References Bellis, Mary. "The History of Laptop Computers." ThoughtCo, Sep. 28, 2018, thoughtco.com/history-of-laptop-computers-4066247. Margo Buchanan-Oliver and Angela Cruz (2011) ,"Discourses of Technology Consumption: Ambivalence, Fear, and Liminality", in NA - Advances in Consumer Research Volume 39, eds. Rohini Ahluwalia, Tanya L. Chartrand, and Rebecca K. Ratner, Duluth, MN : Association for Consumer Research, Pages: 287-291. “11 Facts About E-Waste.” DoSomething.org | Volunteer for Social Change, www.dosomething.org/us/facts/11-facts-about-e-waste. Mcallister, Lucy. “The Human and Environmental Effects of E-Waste.” Population Reference Bureau, www.prb.org/e-waste/. Robinson, Brett H. “E-Waste: An Assessment of Global Production and Environmental Impacts.” Science of The Total Environment, vol. 408, no. 2, 2009, pp. 183–191., doi:10.1016/j.scitotenv.2009.09.044. “Cleaning Up Electronic Waste (E-Waste).” EPA, Environmental Protection Agency, 3 Dec. 2018, www.epa.gov/international-cooperation/cleaning-electronic-waste-e-waste. By Jett Williams
One of the unique phenomenons that has arisen in our current digital age is the shared transportation system. Bikes, electric scooters and hoverboards are ‘docked’ and can be used by anyone signed in to an app to move from point to point. Some brands of shared transportation must be left at designated docks, to charge or to be kept secure. Others, like Bird electric scooters, come with microprocessors and GPS location so they can be left anywhere the user pleases. On the surface, this looks like just another form of innovative 21st century transportation technology, but as is often the case with modern conveniences, it holds a worrying dark side. Shared bicycles have been a concept for a long time. Amsterdam was the first city to try the concept in 1965 (Demaio). They painted bikes white and released them into circulation for the general public to use and leave for the next person. Unfortunately, within several months most bikes were found destroyed, stolen or dumped into one of Amsterdam’s canals. Nonetheless, it was an innovative experiment into urban transportation solutions, and the idea was later adopted in Denmark in the early 1990s (Demaio). This system featured bikes more purpose-built for city riding, with solid rubber tires and advertising plates in the wheels. The bikes could be gotten from coin-deposit-unlocking racks found throughout some of Denmark’s major cities. Unfortunately, this system suffered the same issue as the last, as bikes were often stolen for personal use, or damaged beyond repair. The third generation of shared bikes began in 1996 at Portsmouth University in England (Demaio). These bikes were rented from an electronically locking rack with a debit or credit card, and featured modern advancements like onboard computers and gps systems. This iteration of the concept proved more successful than the last, because the renting system held users accountable to their bikes, preventing theft and misuse. Over the next ten years, bike-sharing would spread over Europe as different cities developed their own systems to fill holes in their public transportation (Demaio). Bike sharing has a moderate impact on a cities transportation distribution and its emissions levels. In one case in France, 50% of trips made by other forms of transportation were made instead by shared bicycle (Demaio). 46% of inhabitants were more likely to use a bike-share than use a personal vehicle in 2009 (Demaio). Evidently, bicycle-sharing has lots of benefits when implemented correctly. But every solution comes with costs, and sometimes too much of a good thing can get out of hand. China’s bike-share program is a perfect example of this. In the 1980s, 63% of commutes in Bejing were made by bike. In 2014, the number dropped to just 17.8% (Campbell). With increased modernization came a lack of interest in bikes. But in 2017, bike-share programs made their way to China, where they exploded in popularity. Brands flooded major Chinese cities with between 16 and 18 million bikes in the last two years, saturating the market with cheap rental bikes (Campbell). But these bikes don’t follow the third-generation bike-share business models that focus on rental fees and locking docks. Instead, the bikes stay where they are left, until the next person picks them up and uses them. Users pay via a smartphone app, and are charged pennies for their rides. By the middle of 2018, the Chinese bike-share program had reached peak bubble. The third-largest sharing program, BlueGoGo, went bankrupt due to a lack of profits and money owed to manufacturers (Haas 1). Bikes were being destroyed, abandoned, and left in areas where they were no longer needed. It was common to see photos of mounds of bikes piled up in front of business, tourist areas or other destinations that people flock to. Elsewhere, massive dumps were being filled with the colorfully painted bikes as a tribute to the hubris of the manufacturers and the lack of foresight. At this time, Shanghai had roughly 1.5 million bikes on it’s streets (Haas 2). It is easy to look at this failure as purely the fault of the company’s management, who invested much to heavily too quickly without allowing enough profit margin to pay the bike manufacturers back for their product. But if we look at this issue through other lenses, we can see that there were a number of factors that played a role in this popped bubble. The first is the idea of a population and it’s commons. A population can be any population, on a global level down to a small town or village. The ‘commons’ are the shared resources, lands and items that belong to all people collectively (Robbins). Commons can be anything, from natural gas and water to the air we breathe and the plants that inhabit our forests and gardens. Typically, humans attempt to maintain their commons through regulation and control of damage (Robbins). The best example of this is with CO2 and emissions caps and taxes. While some corporations can skirt around these regulations for the most part, they were put in place to protect the common air that we all breathe. However, much of the time humans put unnecessary burdens onto the commons, either through overpopulation or increased consumption of goods and materials. This is what is known as the “Tragedy of the Commons (Robbins).” Typically, these burdens are not needed for the survival of the human species. This can be seen through issues like overpopulation, over dependence on fossil fuels and clear cutting forests so the land can be used for agriculture. These happenings are known as tragedies because they could have been avoided. Viewed through this lens, bike-sharing bikes are a part of the commons. They are a resource available to every citizen of the cities where they have taken a foothold, provided you have pennies to your name and a credit card or smartphone. They are a shared resource, similar to air and water, with the obvious exemption that they are man-made and man-maintained. The unnecessary burden placed on these commons is not so much a burden as it is a misuse. The Chinese began to take these bikes for granted and treat them with the same respect that humanity as a whole treats it’s environmental commons. Bikes were left to rust in the streets, abandoned once broken, and stacked in large piles outside of popular destinations. The tragedy of these commons was not their depletion, but their abuse and misuse. Realistically, this is just par for the course for humanity. Take any commons, leave it unregulated and without protection, and see what becomes of it. There were no incentives to leave a shared bike in better condition than you found it, and no real repercussions for abusing the bikes or leaving them in a state of malfunction. For this reason, like so many of our other natural commons, the resource was depleted. Why then does bike-sharing work in so many other areas? Why has it only really failed (in modern practice) in China? The answer can be found in the commons. When resources are scarce and exclusive, they are treasured and protected. Examples of this include endangered species, the shrinking ice caps and the smaller, more exclusive ride-share programs found in other countries. When there is enough of a shared resource that everyone has access all of the time, typically the resource is abused and not maintained until some damage has been done. Examples of this include air, soil and the massive number of bikes introduced to China’s cities. Because there was such an astronomical number of bikes, noone valued them like they do in other nations, and the common resource suffered as a result. Another lens through which we can better understand what happened in China is Political Economy. This lens has several facets, ranging from capitalism and market dynamics to government regulations and the commodification of nature. In simplest terms, one of the major problems with modern capitalism is that the capital, which can be products, money or other items, becomes concentrated in a few major areas, leading to instability and eventual collapse (Robbins). On one hand, you could look at what happened in China as a classic failure of capitalism, taking the form of the bubble that grows and grows until popping, as we have seen with countless other trends, products and markets. The amount of bikes in China’s cities was so far beyond any previous attempts at bike-sharing. America’s largest bike-sharing brand, based in New York, has 10,000 bikes available (Campbell). London has 16,500 bikes, and Paris has 21,000 (Campbell). In stark comparison, Bejing has over 2.4 million bikes (Campbell). Clearly, this happened due to the opportunistic bike-share brands in China trying to get a leg up on competition by saturating the streets with their bikes, so no one would have to look far to catch a ride. As many other bubbles did before it, the saturation reached critical mass and the bikes became more of an eyesore then a benefit to the community You could also look at it as a failure on the part of the government to recognise where all this was going, and regulate the market before it reached critical mass. Other forms of bike-sharing have for the most part been commissioned by cities as a solution to transportation woes, or otherwise heavily regulated (Demaio). But no such safeguards were put into place in China, leading to the problem we see now. The Chinese government recently began taking steps to control the damage of the bike-share bubble, but it’s efforts will need to be ramped up to truly fix the problem at hand, and it will be a long time before China is able to fully alleviate the damage that has been done. Some actions that local governments have taken include confiscating derelict, abandoned or illegally parked bikes and crafting new laws to prevent any startup from flooding the streets with userless bikes (Taylor 2). They’ve also began thinking of ways to redistribute the excess of bikes. Some are being refurbished and distributed to smaller neighboring towns, to limit the pile-ups that occur when lots of bikes are left in the same spot in big cities. Some of the bikes are being recycled into raw materials, while still more have been cubed and sent off to landfills (Taylor 2). China’s bicycle sharing fiasco may seem like a one-off occurrence, something that we can gawk at online and laugh about with our friends, but it can teach us a lot about the intersection of human nature and our common shared resources, as well as market dynamics and global political economies. As with other common shared resources that are incredibly abundant, China’s shared bikes were neglected, abused and taken advantage of by the communities that benefited off them. In the end, this was a contributing factor to their failure, as it will be with our globe if we continue along the same route. And, it showed us yet another example of the failures of capitalism when a market is oversaturated with a good or product. Because so many bikes were introduced so quickly and the government failed to address the issue in time, the bubble swelled until it burst, leaving behind the scrapped remains of millions of bicycles. I think that the bike-share concept definitely has merit, and I would like to see it done again, with more oversight and less saturation. We’ve seen it work in other countries, with impressive effects on personal vehicle usage and emissions statistics. But in China, there is no question that bike-sharing came too fast and with too much intensity to be sustainable. Works Cited Campbell, Charlie. “China's Bike-Sharing Fever Has Reached Saturation Point.” Time, Time, 2 Apr. 2018, time.com/5218323/china-bicycles-sharing-economy/. Demaio, Paul. “Bike-Sharing: History, Impacts, Models of Provision, and Future.” Journal of Public Transportation, vol. 12, no. 4, 2009, pp. 41–56., doi:10.5038/2375-0901.12.4.3. Haas, Benjamin. “Anger as Chinese Bike Sharing Firm Shuts up Office with Riders' Deposits.” The Guardian, Guardian News and Media, 17 Nov. 2017, www.theguardian.com/world/2017/nov/17/anger-as-chinese-bike-sharing-firm-shuts-up-office-with-riders-deposits. Haas, Benjamin. “Chinese Bike Share Graveyard a Monument to Industry's 'Arrogance'.” The Guardian, Guardian News and Media, 25 Nov. 2017, www.theguardian.com/uk-news/2017/nov/25/chinas-bike-share-graveyard-a-monument-to-industrys-arrogance. Robbins, Paul, et al. Environment and Society: a Critical Introduction. Wiley-Blackwell, 2014. Taylor, Alan. “The Bike-Share Oversupply in China: Huge Piles of Abandoned and Broken Bicycles.” The Atlantic, Atlantic Media Company, 22 Mar. 2018, www.theatlantic.com/photo/2018/03/bike-share-oversupply-in-china-huge-piles-of-abandoned-and-broken-bicycles/556268/. Taylor, Alan. “China Is Still Sorting Through Its Colorful Bike-Share Graveyards.” The Atlantic, Atlantic Media Company, 1 Aug. 2018, www.theatlantic.com/photo/2018/08/china-abandoned-bike-share-graveyards/566576/. Plants and animals have been domesticated since humans were capable of settling down in an area, ending the era of hunter/gatherer societies. By utilizing selective breeding, plants were able to produce a greater abundance of fruits and vegetables and animals were able to produce more meat, dairy and eggs. This process has been used since it’s conception, and is still in use today. But Herbert Boyer and Stanley Cohen introduced a more efficient method for modification in 1973. The method they created is what we now call genetic modification. A common method begins by extracting a segment of DNA that contains desirable traits and then using recombinant DNA methods. Recombinant DNA is formed via genetic recombination, which is the combining of genetic material from multiple sources. The end result is a host that contains sequence that would otherwise not be found. This is the method that Boyer and Cohen used in their infamous experiment.
What is now considered the dawn of genetic modification, Boyer and Cohen took a gene from a bacterium that displayed resistance to kanamycin – an antibiotic – and inserted it into a plasmid. They then induced another bacteria to incorporate the plasmid. The modified bacterium was then able to survive in the presence on kanamycin, when it previously couldn’t (1). Boyer then teamed up with Robert Swanson, a fellow chemist, and founded Genentech in 1976, which is still one of the largest biotechnology companies in the world. Within their first year they had already developed somatostatin within E.coli; they then used this as a stepping stone, and by 1978 they began production of genetically engineered human grade insulin (2), replacing the common pig insulin that was on the market. In 1983, the first genetically modified plant was developed. Michael Bevan, Richard Flavell and Mary-Dell Chiltion infected a tobacco plant with a bacterium that had been modified with an antibiotic resistance gene. Once proper infection had occurred, they were able to grow the plant with a resistance gene (2). In 1987, mice were modified to produce human tissue plasminogen activation in their milk (4). Once the 1990s came around, genetic modification took off. China began to commercialize a virus-resistant strain of tobacco in 1992 (5), Calgene (known as Monsanto) began production of the first genetically modified food, the Flavr Savr tomato (6), Europe approved herbicide resistant tobacco (7), and insect resistant potatoes were approved in the United States (8). This process has continued with plants, and in 2015, the first genetically modified animal for food use was approved: AquAdvantage salmon. This salmon has a base of an Atlantic salmon, with a growth hormone-regulating gene from the Pacific Chinook and a promoter from an ocean pout, allowing it to grow year round as opposed to the spring and summer seasons. The fish is capable of growing to 16-18 inches within a few months opposed to the three years it would normally take (9). While this may seem scary to some, it creates an opportunities that we wouldn’t have otherwise. Our current existence relies on the consumption of nature. But if we are to modify species to exist with little to no impact on nature, we can release our hold on nature and allow it to return to how it was. Creating genetically modified organisms such as the AquAdvantage salmon allows us to become less reliant on standard fishing. By moving to a modified salmon, we can allow natural fish species to repopulate while we consume a species that is designed for consumption. As it stands now, fish are heavily over populated. But that is not to say that we should stop fishing. Species populations still need to be kept in check to prevent prey from consuming everything. But by utilizing a modified fish, we can harvest more while not completely decimating the natural fish populations. Unfortunately, many believe that companies like Monsanto create problems for farmers. But many things heard about Monsanto are myths. On NPR, Dan Charles debunked five of the top leading myths about GMOs (10). Monsanto has gained a lot of notoriety for suing farmers. There have been approximately 147 lawsuits taken up against farmers by Monsanto (11). When purchasing Monsanto seeds for any number of their crops, you must abide by patent laws. In 1980, the US Supreme Court ruled in Diamond v. Chakrabarty that genetically modified organisms can be patented. This has lead to agreements when purchasing genetically modified seeds that the seeds will be used for a single season, and any seeds to be produced will not be used for the next harvest season. Many critics claim that this requires farmers to purchase seeds every year, something that they never had to do before. The truth is, most farmers were already buying seeds every year, unless they were using open source seeds, or varieties they grew themselves. Monsanto has only taken claims against those farmers who broke contract by collecting seeds and reusing them. Other farmers recognize their illegal actions and report them, leading to lawsuits. Monsanto’s products – like all other GMOs – have actually decreased the overall cost of the farmer. Having a seed that is herbicide and insect resistant means that less money is spent on insecticides and other chemicals. The one real issue caused by GMOs is the insects becoming resistant to the insecticidal bacterium. Monstanto uses Bt, or bacillus thuringiensis, which is a compound that naturally exists in soil. Monsanto has developed a method of using the Bt proteins in the plant that will kill insects upon eating a portion of the plant (13). The method promoted to prevent insect resistance is to grow a patch of non-Bt crops near the Bt crops. This allows insects that feed on the non-Bt crops to mate with insects that have become resistant to the Bt, leading to offspring that is not resistant. This requires farmers to follow the recommendations for their crops to prevent the potential decimation of future crops. Much of what we do and how we farm depends on water and temperature being perfect. But with genetic modification we are able to design a plant that needs less water while producing more. We live in a world were it is Nature v. Humanity, but it is not necessary for us to live in such a way. By modifying plants, we can live in harmony with nature, while maintaining populations that live in areas that would otherwise be uninhabitable. Golden Rice biosynthesizes Vitamin A within the edible part of rice (14), providing vitamin A to those who live in areas that have a shortage of dietary vitamin A. Monsanto was one of the companies to develop it, and they enabled free licensing to developing countries where vitamin A deficiency occurs (15). Farmers were also allowed to collect and reuse seeds for the next harvest (16). While this action could have been just for good press, the action was good and helped those in need. There are many beneficial properties of GMOs, and testing is thorough. The World Health Organization, or WHO for short, has developed a series of protocols a product must pass before it can reach market. This includes allergy testing, gene transfer, and outcrossing (17). Gene transfer occurs when genes from the plant affect the consumer. This would occur in a situation where a crop contains antibiotic-resistant genes were transferred to the consumer. Outcrossing occurs when genes from genetically modified plants mix with standard crops. WHO also does risk assessment of the environment by determining if the crop will be stable in the environment and if it will have any negative impacts on it. With WHO being a international organization, all genetically modified organisms are regulated and tested, ensuring no misdeeds reach the environment. While humanity tries to erase the mark we have made on this planet, many oppose changes that could help us live in harmony with nature due to myth and misunderstanding. Fear of the novel is understandable, but these new technologies can help millions around the world not go hungry. According to the UN, poor nutrition is the cause of death for 45% of the deaths of children five and under, which is approximately 3.1 million children every year. The UN claims that one in four children is stunted, and in developing countries - where poor nutrition is common – that number is raised to three out of four (18). There is no need to continue to be a drain on natural resources when we can modify what we have to grow more with less. By utilizing better growing techniques partnered with effective genetically modified organisms, the world could live without having millions, if not billions of starving people. While freshwater isn’t necessarily an issue for now (1.06e+19 L left, ~4e+15 L used each year, that’s 2658.3 years left), the natural landscape as we know it is getting decimated. With more efficient crops, we can utilize less landscape and sustainably use the land while sustaining our population. Traditional crops and techniques were significantly less efficient and would take more resources to grow the same – if not less – than we would grow with genetically modified organisms. All in all, genetically modified organisms are our future. With the changing environment, we need to adapt to prevent any further damages. Interactions with our surroundings should not be domination and extraction. It should be utilizing the minimum amount of natural resources as possible to provide for the vast amount of people we have on this rock. These modified organisms can change our world for the better, as long as organizations such as WHO continue to regulate the market. It is through innovation and advancement that we may reach a place in time where we are capable of sustaining our population while still living in harmony with our planet. Citations 1) “GNN - Genetics and Genomics Timeline.” GNN - Genome News Network, Genome News Network, 2004, www.genomenewsnetwork.org/resources/timeline/1973_Boyer.php. 2) Goeddel, et al. “Expression in Escherichia Coli of Chemically Synthesized Genes for Human Insulin.” PNAS, National Academy of Sciences, 1 Jan. 1979, www.pnas.org/content/76/1/106. 3) Bevan, Michael W., et al. “A Chimaeric Antibiotic Resistance Gene as a Selectable Marker for Plant Cell Transformation.” Nature News, Nature Publishing Group, 14 July 1983, www.nature.com/articles/304184a0. 4) Gordon, Katherine, et al. “Production of Human Tissue Plasminogen Activator in Transgenic Mouse Milk.” Nature News, Nature Publishing Group, 1 Nov. 1987, www.nature.com/articles/nbt1187-1183. 5) James, Clive. “Global Status of Transgenic Crops in 1997.” 1997, http://www.isaaa.org/resources/publications/briefs/05/download/isaaa-brief-05-1997.pdf 6) Bruening, and Lyons. “Archive.” California Agriculture - University of California, Agriculture and Natural Resources, University of California, Agriculture and Natural Resources, 1 June 2000, calag.ucanr.edu/Archive/?article=ca.v054n04p6. 7) MacKENZIE, DEBORA. “Transgenic Tobacco Is European First.” New Scientist, New Scientist, 18 June 1994, www.newscientist.com/article/mg14219301.100-transgenic-tobacco-is-european-first.html. 8)“Lawrence Journal-World.” Google News, Google, news.google.com/newspapers?id=A0YyAAAAIBAJ&sjid=jOYFAAAAIBAJ&pg=4631,1776980&dq=bacillus thuringiensis potato 1996 approved&hl=. 9) Blumenthal, Les. The Washington Post, WP Company, 2 Aug. 2010, www.washingtonpost.com/wp-dyn/content/article/2010/08/01/AR2010080103305_pf.html?noredirect=on. 10) Charles, Dan. “Top Five Myths Of Genetically Modified Seeds, Busted.” NPR, NPR, 18 Oct. 2012, www.npr.org/sections/thesalt/2012/10/18/163034053/top-five-myths-of-genetically-modified-seeds-busted. 11) “Lawsuits Against Farmers.” Monsanto, 11 Apr. 2017, monsanto.com/company/media/statements/lawsuits-against-farmers/. 12) “Diamond v. Chakrabarty, 447 U.S. 303 (1980).” Justia Law, US Supreme Court, supreme.justia.com/cases/federal/us/447/303/. 13) “Insect Resistance To Bt Crops.” Monsanto, Monsanto, 11 Apr. 2017, monsanto.com/company/media/statements/insect-resistance-bt/. 14) Ye, Xudong, et al. “Engineering the Provitamin A (β-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm.” Science, American Association for the Advancement of Science, 14 Jan. 2000, science.sciencemag.org/content/287/5451/303. 15) Dobson, Robert. “Bulletin of the world Health Organization” 2000. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2560613/pdf/11100623.pdf 16) Mayer, Jorge. “Golden Rice Project.” Why Golden Rice, Golden Rice Project, www.goldenrice.org/Content3-Why/why3_FAQ.php#Licence. 17) “Frequently Asked Questions on Genetically Modified Foods.” World Health Organization, World Health Organization, 15 Feb. 2017, www.who.int/foodsafety/areas_work/food-technology/faq-genetically-modified-food/en/. 18) “Goal 2: Zero Hunger - United Nations Sustainable Development.” United Nations, United Nations, www.un.org/sustainabledevelopment/hunger/. By Lisa Ko ![]() Blue Blood In 1918, there was an influenza pandemic that was spread across the world and it is the major cause of sickness and death. The influenza was actually discovered from the studies on animal diseases by a veterinarian, J.S. Koen, who observed the disease in pigs and believes that it was the same disease. (White, 2004) The influenza is an infection in the respiratory system that is caused by a virus. The symptoms of the flu are headaches, fever, and dry coughs. The infection is extremely dangerous for infants, elderly, and people who have health problems because of their weak immune system. The color of the horseshoe crab’s blood is baby blue. Their blood is baby blue because it is rich in copper. The molecule that carries oxygen in horseshoe crabs are called hemocyanin. The horseshoe crab blood also contain amebocytes. The amebocytes in their blood attacks bacteria, pathogens, and endotoxins. (Law, 2012) The amebocyte compound that was found was also known as Limulus amebocyte lysate (LAL) which was responsible for clotting. Researchers found that the horseshoe crab blood would vigorously clot when it was exposed to E. coli. (Hoekenga, 2010) LAL is used in medicine like flu shots as well as testing for contamination of the medical equipment. The horseshoe crabs plays an important role in our world because of how much their blood has changed medicine. Their blood has dramatically changed the amount of death that was caused by influenza and it has become something people rely on in order to stay healthy during the flu season. Influenza used to kill thousands of people, but now flu shots developed from the blood of horseshoe crabs have probably saved just as many people if not more. With the important role that horseshoe crabs play in the ecosystem, humans have also threatened their species and population by overharvesting them for their blue blood. How can we limit the amount of horseshoe crabs we harvest and drain each year? Moreover, can the compound that the horseshoe crabs have in their blood be made synthetically? A Short History of Horseshoe Crab Horseshoe crabs are one of the oldest species that still exist today. They belong to the phylum of Arthropoda which includes the five distinct characteristics: exoskeleton, segmented bodies, jointed appendages, bilateral symmetry, and an open circulatory system. (Pokhrel, 2015) There are four horseshoe crab species, but the one that is found along the coast of North America in the Atlantic Ocean is Limulus polyphemus. The other three species are found in the Indo-Pacific Ocean. (About the Species) The structure of the horseshoe crab consist of three sections: cephalothorax, abdomen, and tail. The cephalothorax of the horseshoe crab contains the nervous system, circulatory system and the intestinal tracts which is protected by a exoskeleton. The abdomen of the horseshoe crab is where the muscles and gills are located and the tail is attached to the abdomen. (Horseshoe Crab Anatomy, 2011) Horseshoe crabs have ten eyes that are located around the top of the cephalothorax, mouth, and tail. They have one endoparietal eye, a pair of median eyes, a pair of ventral eyes, a pair of lateral eyes, a pair of rudimentary lateral eyes, and a photoreceptor array in the tail. They also have five pairs of walking legs and a pair of legs that is used for burrowing. The legs are also used to crush their food before putting it in their mouth because they do not have mandibles or teeth to break up the food. There are five pairs of gills that are located in the abdomen. The gills help with gas exchange and also functions as paddles to help the horseshoe crab swim. The tail of the horseshoe crab is used for steering where they are going and also when they get flipped over in the tidal zone. (Horseshoe Crab Anatomy) The horseshoe crabs plays an ecological role in the food web. The adult horseshoe crabs spawns in May and June along some of the beaches of the Atlantic Ocean coast. The spawning starts with the female horseshoe crabs digging holes to deposit their eggs and the male horseshoe crabs fertilizing the eggs. After fertilizing the eggs, the female and male horseshoe crabs will go back in the ocean. Aside from reproducing horseshoe crabs, the eggs also become a food source for other species. The animals that prey on these eggs include bird, reptiles, and fish. The American Red Knot, Calidris canutus rufa, is specific bird species that prey on these horseshoe crab eggs. The food that the American Red Knot looks for as they are migrating from South America to Arctic for the summer are the horseshoe crab eggs. The population of the American Red Knot plays a role in the population of horseshoe crabs because the birds that are preying on the eggs affect the amount of horseshoe crabs are born. (Rafferty) Apart from the animals that prey on the horseshoe crab eggs, humans also play a major role in declining population of these horseshoe crabs because of human activities. One human activity that has affects horseshoe crabs is the increased amount of development of beachfront properties on the Atlantic coast has lowered the breeding habitat of the horseshoe crabs. Another big human activity that affects horseshoe crabs is the use of their blood in the biomedical industry. (Rafferty) The effects of human activities have threatened the population of horseshoe crabs due to overharvesting and habitat loss. The role of horseshoe crabs is important because they are connected to other species that prey on them. Without the horseshoe crabs, we may also see a decline in the populations that depend on them. ![]() Institutions: Medical Laboratories An institution is a system of acknowledged constraints on an individual’s behavior. Institutions have also helped with solving problems regarding to the management of commons. The ‘Common property’ is a resource that is a group ownership and does not exclusively belong to one individual. (Robbins, 55) There are two different perspectives on whether or not draining horseshoe crabs’ blood is unethical. The positive side benefits the people who are consuming the flu shots that are produced from the LAL compound and the negative side is depleting the population of the American horseshoe crab species. The positive benefit that humans gain from the draining of horseshoe crabs’ blood is that it help with the advancement of medicine. For years, their blood is what is in the flu shots that we consume every year to prevent ourselves from getting sick. The institutions that are collecting the blood every year from these horseshoe crabs also use their blood to test for contamination of the medical equipment. The positive advancement of medicine has benefit our society dramatically, but this has also made a negative effect on our environment. The negative side of using the horseshoe crab blood is that we are poaching and exploiting the for a selfish human need. The poaching of horseshoe crabs have affected their population and is declining due to the overharvesting for their blood. On top of poaching these horseshoe crabs, they are also being threatened by their habitat because of the destruction of coastal development. The negative effects will become a bigger issue if we continue to poach and exploit the horseshoe crab’s blood. Institutions play a role in this issue because there are laboratories in the United States that are draining horseshoe crabs, but there have also been recent new laboratory called Eli Lilly that have be developing a product to take of the pressure of horseshoe crabs. That product is a synthetic enzyme that can replace the blood of horseshoe crabs in endotoxin tests. The synthetic enzyme is cost-effective and it helps with reducing the overharvesting of horseshoe crabs and it will also replace ninety percent of the actual horseshoe crab blood. (Cramer) Therefore, institutions have affected horseshoe crabs both positively and negatively. Environmental Ethics Ethics is the study of right and wrong where we ask, “What should people do in that situation and why?” Ethical dilemmas also brings up the problems of the right and wrong regarding human activities toward nature. An ecological ethics perspective can also change how we solve the issues that we have in the conservation of our environment. (Robbins, 67) The ethical issues that are surrounding the topics of horseshoe crabs are draining thousands of horseshoe crabs every year for their blood. The draining of the horseshoe crabs happen in a laboratory. One laboratory that extract horseshoe crab blood is Charles River Laboratories. The process of extracting their blood starts by washing and scrubbing the shells of the horseshoe crabs and then spraying them off. After the wash, the horseshoe crab tail gets folded underneath their body. Then, they are strapped down by a bungee cord and a needle was inserted to extract their blood into a bottle. (Baby Blue Blood) The draining of the horseshoe crabs is an ethical dilemma because people in the medical field are exploiting these horseshoe crabs for their blood. The amount of blood that is drawn from the horseshoe crab is a little less than thirty percent which is a lot compared to the amount that humans donate in blood banks (usual amount is ten percent). Often times when the horseshoe crabs are released back into the wild, they do not survive because of the amount that was taken from them. In order to reduce our destruction in the world, we should reduce the amount we are taking and be mindful that these horseshoe crabs also deserve to live. Another ethical issue is how the flu shots are made because it involves a lot of animal testing. The specific animal that was used in testing was rabbits. The people who was conducting the experiment would check if the drug would work on rabbits by restrain the rabbits neck loosely and injecting a sample of the drug. The sample drug was injected into the rabbits ear to see if the rabbit would have a fever that is caused by a certain bacteria that is in their ear. The fever was measured by an electric thermometer that was inserted in their cloaca. The results of this test showed that this was reliable because of the sensitivity of rabbits to new things. (Baby Blue Blood) This is an ethical issue because this shows that humans are selfish and these kinds of experiments show that we would rather sacrifice non-humans. This creates a big ethical issue because we are using animals for our own good while disregarding that they also matter in our ecosystem. Conclusion The blood of horseshoe crabs have sparked the interest of many people, but it has also raised questions about ethics. The horseshoe crab has been a positive medical advancement in our society, but it also has created a negative effect on the horseshoe crab species. Without using the blood of horseshoe crabs, we may never have been immune to influenza. The horseshoe crab is not only important to our medicine, it is also an important player in our ecosystem. The two perspectives that was discussed was the institutions that are involved in the horseshoe crabs and the environmental ethics of poaching the horseshoe crabs. The one perspective have shown the positive and negative sides of how the institutions have changed the people, animals, and environment. The other perspective questions ethics because of the poaching of horseshoe crabs and testing on rabbits to produce a product that only benefits humans. A recent solution for reducing the overharvesting of horseshoe crabs’ blood was by creating a synthetic horseshoe crab blood. This is a solution that can help with reducing the high amounts of blood drained and also the amount of horseshoe crabs that would be poached. The synthetic horseshoe crab blood could be the change we need to save our environment and to prevent the horseshoe crabs’ species from being threatened. References “About the Species.” The Horseshoe Crab, www.horseshoecrab.org/nh/species.html “Baby Blood Blood.” Listen Notes, Radiolab, 29 Aug. 2018. Cramer, Deborah. “Inside the Biomedical Revolution to Save Horseshoe Crabs and the Shorebirds That Need Them.” Audubon, Audubon, 5 July 2018, www.audubon.org/magazine/summer-2018/inside-biomedical-revolution-save-horseshoe-crabs. Hoekenga, Christine. This Flu Season, Thank a Horseshoe Crab. Smithsonian's National Museum of Natural History, Nov. 2010, ocean.si.edu/ocean-life/invertebrates/flu-season-thank-horseshoe-crab. “Horseshoe Crab Anatomy.” Crash: A Tale of Two Species, Public Broadcasting Service, 13 Mar. 2011, www.pbs.org/wnet/nature/crash-a-tale-of-two-species-horseshoe-crab-anatomy/593/. “Horseshoe Crab Anatomy.” Department of Natural Resources, dnr.maryland.gov/ccs/Pages/horseshoecrab-anatomy.aspx. Law, Steven. “A Horseshoe Crab Could Save Your Life.” KSL.com, 5 Nov. 2012, www.ksl.com/?sid=22797818. Pokhrel, Pratiksha. “General Characteristics and Classification of Arthropoda.” Microbiology Notes, 1 Dec. 2015, www.microbiologynotes.com/general-characteristics-and-classification-of-arthropoda/. Rafferty, John P. “Horseshoe Crab: A Key Player in Ecology, Medicine, and More.” Encyclopædia Britannica, Encyclopædia Britannica, Inc., www.britannica.com/story/horseshoe-crab-a-key-player-in-ecology-medicine-and-more. Robbins, Paul, et al. Environment and Society: a Critical Introduction. 2nd ed., Wiley-Blackwell, 2014. White, Jason. “Influenza.” Medical Ecology, 2004, www.medicalecology.org/diseases/influenza/influenza.htm#sect2.4. ![]() Tyree Hanson Professor Johnson GEOG 300 8 December 2018 Meat Production The meat industry has been both an essential part of economic gain in the United States but has also caused a number of harmful effects on the environment and society. There are an abundance of examples of these harmful effects that the meat industry has caused to our society and our world as a whole. Growth hormones and many other liquid injections is the cause of all these issues that are corrupting our society. Our people are getting sick everyday from what the farmers disperse to our markets and grocery stores. The farms and the people that fund these farms only care about mass production and how much meat they can produce in the fastest manner. The art of farming without growth hormones is gone and it is something that is drastically hurting us. It may seem like it isn't doing that much damage to us now but in the long run it can have a lot of effects on the upcoming generation and how they live their lives. Additionally, there are factory farmers that have slaughtered their whole farm just to restart from scratch due to them not liking the injections and how it all affects the animals that are raised and taken care of on these factory farms. Furthermore, pigs, chickens, goats, cows all grow to extreme sizes and start changing drastically then from a animal raised without any extra injections or creams. Animals that are on factory farms aren't just changing on the outside but on the inside also. There have been many accidents when pigs have bit their farmers, these instances usually have the farmers infected with virus that are impossible to get rid of because at that point you are now exposed to the same virus and liquids you were just injecting into the pigs. What follows in the next few pages is a brief history of the meat production in the United States. I will look at these problems with two different lenses; risk and hazards and environmental justice. If people take a look at the bigger picture of meat production, it is easy to tell that it isn't headed in the right direction in the development of our world. We need to worry about our health for all people and animals. It all starts at the table where we eat our food and if we are eating meat that is injected with various of different antibiotics, steroids, etc., we will never be truly healthy in this world. If I’m not mistaken isn't that everyone's ultimate goal? Living a healthy lifestyle is the objective so if there is no change we won't change either. HISTORY Since prehistoric times humans have hunted and killed animals for meat consumption. With the arrival of civilization came slaughterhouses and meat industries that would contribute to the United States economic gain. The meat industry developed at central market points such as Philadelphia. In 1818, Cincinnati became the first meat packing industry and the city was called “Porkopolis.” Fast forward a couple years the meat packing spread westward to Chicago, Kansas city and Omaha. In 1945, after World War II, two developments happened. The first development was local butchers which began to expand throughout the country. The second development was that there was new technology such as refrigerated cars that would allow the shipment and delivery of meat. With this new invention meat industries were able to expand and move to big cities. With the innovation of meat industries throughout the the mid 1900’s, scientists became more involved and focused on understanding the risks and hazards that a lot of these meat productions came with. “The concern over food additives, and especially those used in the production of meat animals and the processing and preservation of meat, led to such research as sulfa residues in pork, the nitrite content of cured products and the preservation of meat through the use of irradiation” (Bray, 1997). LENSE ! When looking at meat production from a risk and hazards you have to think about all the possibilities of your life and health risk before consuming certain meat.According to (CDC) Centers for Disease Control and prevention on average three thousand people each year die from foodborne illnesses. If you don’t think that is a wild statistic know that eleven to twenty eight percent of people every year consume ground beef or uncooked. With twenty five billion pounds of meat each year getting consumed in the U.S it makes all of us very deceptable to getting the foodborne illness that in the long run can kill you very quick. Also each year salmonella - contaminated eggs cause about seventy nine thousand cases each year causing on avg thirty deaths per year according to the US Food and Drug Administration (FDA). Furthermore there are many documentaries and articles including pictures that verify that many animals are getting fed other animals as their feed. It is mostly seen with cows eating dead cows, but how could you trust the meat you eat if they are feeding that animal something that is dead let alone a dead cows leftovers. When these situations happen the cows tend to get really sick or it shows in the meat and when someone consumes the meat that was once an cow eating dead cow for his feed that particular individual will then get very sick and be very vulnerable to getting foodborne sickness and other illnesses like tapeworms, food poisoning.Then these things will lead to people constantly vomiting,diarrhea, nausea. There are many risk when it relates to meat and the production of it all. In addition eating meat regardless is very risky due to all the other health issues you can receive by eating too much or very little meat. Eating meat you can gain higher risk of getting cancer, diabetes and heart disease. Also it can lead to erectile disfunction for some men and it makes it harder to maintain body weight in men and women. Consequently due to how meat is processed and made you take risk every time you touch or eat meat you just gotta do your own inspections and research of which brands you will like best to eat. LENSE 2 When looking at meat production from an environmental justice perspective we can tell that it’s had a lot of harmful effects to the environment. As sea level rises and other extreme weather events occur due to the changes of climate change, scientists believe that the 21st century has brought the highest number of GHG emissions. The number one contributor of GHG emissions being animal agriculture. Animal agriculture has produced more greenhouse gasses than regular transportation. Greenhouse gases are gases that trap heat into the atmosphere. .. Greenhouse gasses are believed to have an impact on climate change today and is one of the biggest issues that we have going on which is often overlooked. The Food Agricultural Organization found that the animal agriculture emits almost 18% of GHG gasses into the atmosphere. (FAO 2006). “Large amounts of ammonia (NH3), leading to soil nitrification and acidification, are produced by livestock” (Dennis, 2010). The other problem that meat production brings is fresh water pollution and loss of wildlife and biodiversity which ties in with the problem of climate change. Farming animals requires a large amount of land. For example, about 260 million acres of U.S. forest have been wiped out to create cropland to feed these animals. Climate change affects biodiversity which affects the ability of biological systems to support human needs. Another problem that meat production brings to the environment is water use. Meat production uses one-third of the Earth’s fresh water, half of that water is given directly to the animals. For example, on average a cow will consume 30 gallons of water a day. CONCLUSION In conclusion the risk of eating meat and getting sick are very high and ultimately the safest thing for your health is to stop eating meat completely to not risk getting any of the above illnesses that I listed. The one that is most important being foodborne illness. In my introduction I said “ Living a healthy lifestyle is the objective so if there is no change we won't change either”. This statement I stand by one hundred percent because why would you risk your health knowing many things can affect your health severely. Your health should be nothing to gamble with,but it seems like the mass population feels otherwise. Is it the mass media propaganda that we should blame for being able to make such persuasive ads or should we blame it on these big corporations that make other food so expensive that we have no choice to eat what's truly bad for us like certain red meat and meat as a whole. Theres many choices in this world that we are left to answer on our own and many of those lye right in front of us when we are going to the grocery store and when we are eating in our homes. We have the decision to make a change for ourselves for our health. Isn't the objective in life to live a happy healthy life? If so we should do our research before we consume and not just eat the meat that is widely praised just because others like it. I’m not saying we should all be vegan or vegetarian, but we should be wise by what meats we eat on a consistent basis and just making sure we cook it fully and also read up on where your food comes from its all online or in a book somewhere. Many of us our too lazy to do these things, but nothing in this world comes easy and our health is something that should never be something we take lightly. On the other hand, I was also able to provide further research on the impact that meat production has had on the environment. These types of impact requires us to reconsider how we use the limited spaces we have and the harm that we are doing to the climate and environment as a whole. Each day a person who eats a plant based diet saves thousands of gallons of water and 30 square feet of forest land. Even if a person does not decide to completely cut out meat from their diet there are other alternatives on how we could change animal agriculture and the way that people get their meat. This would not only allow a more healthy lifestyle for humans but a more safer environment for future generations to come. REFERENCES: Bray, W. Robert. 1997. “The History of Meat Science.” American Meat Science Association. Dennis, G.A. 2010. “An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption” Food and Agricultural Organization. http://www.fao.org/about/en/ Centers For Disease and Control Prevention, “Burden of Foodborne Illness: Findings.” https://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html Robbins, P. Hintz, J., & Moore, S.A. (2014). Environment and society: A critical introduction (2nd ed). Wiley-Blackwell. ISBN: 9781118451564 Food Poisoning, Healthy Line Red. https://www.healthline.com/health/food-poisoning#preventi- on Ellen Murana
Geology December 6, 2018 Final Project Object of Concern : E-Waste Management People in the world are unaware of the negative aspects of buying a new TV , batteries, computer or even plastic has on the earth. What many citizens do not seem to understand is the part that they play in dis-benefting the environment by filling up landfills with waste. The amount of waste that humans produce is currently growing in a rapid rate that methods of reducing waste were taken into consideration. It is estimated that in the Unites States 70 percent of our electronic waste are in landfills which creates the concern of pollution with in heavy metals. By the year 2010 the amount of electronic waste found in landfills ranged about 440 million electronic products. China is the second and India follows after in producing large amounts of e-waste in the world compared to the United States. The start of electronic waste was the need for technology, households items and entertainment. The television which began in the year 1933 when the demand for televisions were requested. The British company Baird was the first to sell a mass production of televisions. The total number of units that they had sold was 1,000 between the years 1930-1933. With the television becoming very popular in Europe it influenced the following countries to do the same . Germany , France, and the United States followed by creating televisions and selling their units with in their country. Britain sold about 19,000 pieces of electronics and the United States sold about a total of 7,000 - 8,000 pieces of electronics. Postwar prosperity increased the amount of free time many people had since the need for military material was no longer needed. Large amounts of people had extra time on their hands and the new invention of the television brought a new form of entertainment other than the radio. It was not until the year 2000 that the television became the most dominate technology and it contained CRTS which contain high levels of lead. Then in the year 1977 the invention of the computer grew moderately over the following decade in countries like the United States . By the year 1990 the sales and usage of computers become a regular item in use for people of the modern time. By the year 2000 the global computer sales reached about 135 million units with about 46 million units being sold with in the United States. E-Waste also consist of household items and electronic waste with in the United States. It was not until the concern of hazardous metallic material that brought the issues of how dangerous e-waste can be. The negative aspects of E-waste is due to the method of extracting material and way of recycle. In the year 2000 the EPA created rules that the waste had to be taken to special recycling facilities . Rather than the waste being disposed in landfills and exposed to open air which can lead to health issues. The act made by the EPA created a concern were landfill management became a main focus on its method of disposal. In terms of international environmental economics it was suggested that the world of equal trade in hazardous waste should be beneficial to all countries. Since some countries do not have the benefit of natural resources we have are nonexistent in their country. The methods of selling metal that has been extracted from the electronic material in landfills is considered to be a form of income to some people . Although the usefulness of selling metallic material for a form of income had a dis-benefit to their health and safety. Which brings the risk of hazardous e-waste and how people are unaware the danger it poses to our health and environment. Found with in landfills are metallic material such as Iron, Aluminum , Cooper, Gold, Silver, Platinum, Palladium, Indium , Gallium, and other rare earth metals. It is estimated that about 60 elements with in the periodic table found in landfills. The main cause of these kinds of material being found in landfills would be the method of extraction and recycling taken. You see e-waste is traded to other countries for their benefit of business. Many of the recycling plants are not equipped with the correct safety and material to make it a safe environment. Take the e-waste scenario in India and how the management methods are not what people would consider to be safe. In India the issues of e-waste began in the year 1990 when the economic phase started to surface and the amount of electronics being bought did as well. The increase in the purchasing capacity of the electronic goods industry in India grew. The solid waste management, which is already the task in India has became a complicated invasion of E-Waste due to the fact that other countries transport their waste there. Most of the activities from the collection , transportation , dismantling , are done by unorganized sectors. Although E-Waste is considered a good source of revenue generation for many people in India. The large portion of pickers with in the landfills are Indian citizens who gather their income from selling inorganic material . Items such as plastic , polythene bags, glass, and ferrous metals are found in these landfills. In India these operations are related to e-waste such as collections , segregation , dismantling , recycling and disposal is done through manual labor. Most techniques used for the recycling treatments of e-waste are very raw and dangerous if done not properly. Improper recycling and disposal operations found in different cities of India leads to open burning of plastic waste. As a result the dumping of pollutants in water , land and air has caused an environmental problem in India. As for the people who do this line of work are employed in the dismantling and recycling units . A large group of these workers are uneducated and are lacking the basic knowledge about the serious risk it is to work there. Often times the workers do not know the proper way in dismantling items to extract metallic waste in a safe manner. Most of the time these recycling operations are performed by the workers with little to no protection from the elements they are exposed to. Some of the tools that are used to dismantle electronic items are hammers, chisels, hand drills, cutters, torches, and some electrical drills. These operations being carried out are in very congested places near the center of the cities and the slum areas. The dismantling and recycling areas are without any proper lighting or any kind of ventilation for their workers. Workers are prone to serious occupational health hazards that lead to forms of illnesses and poor health. Sadly there is no organized or formal E-Waste system in India to help their workers well being. The scenario of the E-Waste management is the need to enact the legal frame works to regulate e-waste . The Basel convention on the control of Transboundury Movements of Hazardous Waste and the disposal plays a huge role in the E-waste trade from OECD countries to Non-OCED countries. The EU took the lead to protect the environment from hazardous of E-waste in Europe by framing two important directives for regulation. One of the directives is WEEE , which is the restriction of certain hazardous substances in electrical and electronic equipment. The WEEE directive has guidelines that to assist producers and consumers in understanding their duty ti handle E-waste in an eviromentaly safe manner. This legislation that was passed by parliament in the year 2007 had put the reposinability of the reporting and financial treatment compliance obligations on the producers. The operator is responsible for registering it’s members with the appropriate national regulator. Making this a tool for providing the details of the equipment that was produced by it’s members. This helps regulates the household WEEE quota for each producer compliance scheme and to be treated with the proper recycling techniques. As for the United States of America the US Environmental Protection Agency intimated a green National Electronic Action Plan (NEPA) to address the environmental concerns of electronics. The NEPA is restricted to computers , televisions, and cell phones . Although the US is not ratified by the Basel Convention . There is a no federal legislation in place prohibiting E-Waste regulation in disposal and exportation. As for the last couple of years in the United States have taken efforts to collect and recycle E-Waste from commercial consumers and residential people. A few states in the US introduced a law for collecting the Advance Recycling Fee (ARF) from the consumer at the time of purchase of a new product. This system charges about 6 dollars to 10 dollars for electronic items. Many other countries formulated their own legal instruments for restricting and regulating the hazards of electronic waste. China’s way of regulating their electronic waste is by the administration of Control Pollution caused by labeling the electroinic information on products. The designer and manufactures of the products are required to add the electronic information to the product. The information informs the consumer the dangers and proper way to recycle the item with accordance to the national industrial standards. The administration also has provision of penalty on imports , sellers, manufatuers and designer in case of noncomipliance. India the Ministry of Environment and Forest (MoEF) is the national authority responsible for legislation regarding watse managment and enviromental protection. It sets the guidelines for enviromentally sound management of E-waste with an objective to provide guidance for identification of sources and electroninc equipment. Although there is no law or regulation that addresses the E-Waste problem and the hazardous material found in the landfills ,which is identifying what is hazardous and non-hazardous. However there is no proven method till this day evolved for the management of E-Waste. What we have to manage E-waste are methods or practices that help in taking care of the situation for the mean time. Take the Extended Produce Responsibility as an example of how the producers must be responsible for the product. The producers responsibility is extended to the post-consumer stage of the product life cycle which should be included in the legislative frame work. Some of the implications to E-waste recycling and recovery towards the concepts of urban mining. Large amounts of E-waste in India has no systematized or formal system available for handling in a scientifically as well in a friendly manner. E-Waste being rich in ferrous materials, plastic, and other material, has turned out as a major business opportunity for many. Some treatment process are versatile which involves recovery of valuable of metals minimizing environment and health impacts . The main treatment for E-waste is done at three levels . There is the 1st level treatment , 2nd level treatment , and the 3rd level treatment. The first level of treatment consists of the removal of liquids and gases the items might contain . Then the manual labor of breaking down the items are taken place and the segregation of material. The scenic level of treatment consists of hammering , shredding , and special treatment of the toxic material found in the items . The third level of treatment is the recycling and the recovery process of the electronic items . In India there is no law that regulates or addresses to issues of E-Waste and it’s hazardous problem. It does not address what material is considered to be hazardous or non-hazardous. The environmental impact of E-waste and health risk is very critical that it is leading to pollution in the world . The use of natural resources can lead to loss of maertial and the toxic influence of electronic waste can lead to health issues among human beings. Which comes to the conclusions that there must be better regulation in trade to prevent overfill of waste in other countries and moderate management in the recycling areas. Citation : Chen, M., Ogunseitan, O., & Wang, J. (2016). Evolution of electronic waste toxicity: Trends in innovation and regulation. Environment International, 89-90, 147. Tang, X., Hashmi, M., Long, D., Chen, L., Khan, M., & Shen, C. (2014). Influence of Heavy Metals and PCBs Pollution on the Enzyme Activity and Microbial Community of Paddy Soils around an E-Waste Recycling Workshop. International Journal of Environmental Research and Public Health, 11(3), 3118. Wath, S., Dutt, P., & Chakrabarti, T. (2011). E-waste scenario in India, its management and implications. Environmental Monitoring and Assessment., 172(1-4), 249. Pariatamby, A., & Victor, D. (2013). Policy trends of e-waste management in asia. Journal of Material Cycles and Waste Management, 15(4), 411-419. Robbins, P. Hintz, J., & Moore, S.A. (2014). Environment and society: A critical introduction (2nd ed). Wiley-Blackwell. Kaya, M. (2016). Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Management (New York, N.Y.), 57, 64-90.
|
Details
Authors
HSU students enrolled in GEOG 300, Global Awareness, during the fall semesters of 2017, 2018, and 2019. Archives
December 2020
Categories |